High School Students’ Multiple Representation Translation Skills on One-Dimensional Motion: A Cross-Grade Study
Abstract
Multiple representations are widely recognized for their significant role in concept learning. This study aimed to investigate the multiple representation translation skills of high school students at different grade levels about the concept of one-dimensional motion. 239 9th, 10th, and 11th-grade students participated in the study using a developmental research model. The data collection tool consisted of questions that required translating figures, tables, graphs, verbal explanations, and algebraic representations into other representation types in a multiple-representation translation test focusing on one-dimensional motion. Data analysis involved evaluating the translation among representations for each category and analyzing the multiple representation translation skills across different grade levels using one-way analysis of variance (ANOVA). The results revealed that students successfully translated from figure, table, and graphical representations to other forms while encountering challenges in translation from verbal and algebraic representations. Furthermore, the ANOVA results indicated a significant difference between the 9th and 11th grades, favoring the 11th grade.
Full Text:
Download PDFReferences
Abdurrahman, A., Setyaningsih, C. A., & Jalmo, T. (2019). Implementing multiple representation-based worksheet to develop critical thinking skills. Journal of Turkish Science Education, 16(1), 138-155.
Ainley, J., Barton, B., Jones, K., Pfannkuch, M.,& Thomas, M. (2002) Is what you see what you get? Representations, metaphors and tools in mathematics didactics, Novotna, J. (ed.) European Research in Mathematics Education II. Charles University Press, 128-138.
Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and instruction, 16(3), 183-198.
Alkhateeb, M. (2019). Multiple Representations in 8th Grade Mathematics Textbook and the Extent to Which Teachers Implement Them. International Electronic Journal of Mathematics Education, 14(1), 137-145.
Baptista, M., Martins, I., Conceição, T., & Reis, P. (2019). Multiple representations in the development of students’ cognitive structures about the saponification reaction. Chemistry Education Research and Practice, 20(4), 760-771.
Başkan, Z. (2011). Doğrusal ve düzlemde hareket ünitelerinin matematiksel modelleme kullanılarak öğretiminin öğretmen adaylarının öğrenmelerine etkileri [The effectiveness of teaching one and two dimensional motion on prospective teachers’ learning using mathematical modeling], Doctoral Thesis. Karadeniz Technical University.
Baştürk, S. (2007). Fonksiyon kavramının öğretiminin 9. sınıf ders kitapları bağlamında incelenmesi [Examination of the functions in first year high school mathematics textbooks]. Sakarya University Journal of Science, 9, 270-283.
Baştürk, S. (2010). Öğrencilerinin fonksiyon kavramının farklı temsillerindeki matematik dersi performansları [Students’ mathematical performance in using different representations of function concept]. Gazi University Journal of Gazi Educational Faculty, 30(2), 465-482.
Birgin, O. (2012). Investigation of eighth-grade students’ understanding of the slope of the linear function. Bolema: Boletim de Educação Matemática, 26(42A), 139–162. https://doi.org/10.1590/ S0103-636X2012000100008
Çelik, D., & Sağlam-Arslan, A. (2012). Öğretmen adaylarının çoklu gösterimleri kullanma becerilerinin analizi [The analysis of teacher candidates’ translating skills in multiple representations]. Elementary Education Online, 11(1), 239-250.
Cleaves, W. P. (2008). Promoting mathematics accessibility through multiple representations jigsaws. Mathematics Teaching in the Middle School, 13(8), 446-452. https://doi.org/10.5951/MTMS.13.8.0446
Demirci, N., & Uyanik, F. (2009). Onuncu sınıf öğrencilerinin grafik anlama ve yorumlamaları ile kinematik başarıları arasındaki ilişki [The correlation between tenth grade students’ understanding and interpreting graphs and their kinematics achievement]. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education 3(2), 22-51.
Dreher, A., & Kuntze, S. (2015). Teachers’ professional knowledge and noticing: The case of multiple representations in the mathematics classroom. Educational Studies in Mathematics, 88, 89-114.
Dufrense, R., Gerace, W., & Leonard, J. (1997). Solving Physics Problems with Multiple Representations. Physics Teacher, 35, 270-275. https://doi.org/10.1119/1.2344681
Erbaş, A. K. (2005). Çoklu gösterimlerle problem çözme ve teknolojinin rolü [Problem solving with multiple representations and the role of technology]. TOJET: The Turkish Online Journal of Educational Technology, 4(4), 88-92.
Eroğlu, D., & Akkuş, B. (2021) 9. sınıf matematik ders kitabındaki üçgenler ünitesinin çoklu temsiller bağlamında incelenmesi [Examining the triangles unit in the 9th grade mathematics textbook in the context of multiple representations]. The Western Anatolia Journal of Educational Sciences , 12(2), 786-804.https://doi.org/10.51460/baebd.995676
Foster, K. (2004). Graphic novels in libraries: an expert's opinion. Library Media Connection, 22(5), 30.
Goldin, G. A., & Kaput, J. J. (2013). A joint perspective on the idea of representation in learning and doing mathematics. In Theories of mathematical learning (pp. 409-442). Routledge.
Gürbüz, R., & Şahin, S. (2015). 8. sınıf öğrencilerinin çoklu temsiller arasındaki geçiş becerileri [8th grade students’ skills in translating among multiple representations]. Kastamonu Education Journal, 23(4), 1869-1888.
Herbel-Eisenmann, B. A. (2002). Using student contributions and multiple representations to develop mathematical language. Mathematics Teaching in the Middle School, 8(2), 100-105.
İncikabi, S. (2017). Çoklu temsiller ve matematik öğretimi: ders kitapları üzerine bir inceleme [Multiple representations and teaching mathematics: an analysis of the mathematics textbooks]. Cumhuriyet International Journal of Education, 6(1), 66-81. https://doi.org/10.30703/cije.321438
İncikabı, S., & Biber, A. Ç. (2018). Ortaokul matematik ders kitaplarında yer verilen temsiller arası ilişkilendirmeler [Transitions among the representations in the middle school mathematics textbooks]. Kastamonu Education Journal, 26(3), 729-740. https://doi.org/10.24106/kefdergi.415690
Işık, C., Işık, A., & Kar, T. (2011). Öğretmen adaylarının sözel ve görsel temsillere yönelik kurdukları problemlerin analizi [Analysis of the problems related to verbal and visual representations posed by pre-service mathematics teachers]. Pamukkale University Journal of Education, 30(30), 39-49.
Johnson, R. B., & Christensen, L. (2019). Educational research: Quantitative, qualitative, and mixed approaches. Sage publications.
Karakuzu, B. (2017). İlkokul ve ortaokul matematik ders kitaplarındaki geometri görevlerinin tür, bağlam, temsil biçimi ve bilişsel istem düzeyleri açısından incelenmesi [Investigation of geometry tasks in primary and middle school Mathematics textbooks in terms of type, context, representation form and cognitive demand levels]. Master thesis. Anadolu University.
Klein, P., Müller, A., & Kuhn, J. (2017). Assessment of representational competence in kinematics. Physical Review Physics Education Research, 13(1), 010132. https://doi.org/10.1103/PhysRevPhysEducRes.13.010132
Kohl, P. B., Rosengrant, D., & Finkelstein, N. D. (2007). Strongly and weakly directed approaches to teaching multiple representation use in physics. Physical review special topics - physics education research 3, 010108. https://doi.org/10.1103/PhysRevSTPER.3.010108
Kusairi, S., Noviandari, L., & Pratiwi, H. Y. (2019). Analysis of students' understanding of motion in straight line concepts: modeling instruction with formative e-assessment. International Journal of Instruction, 12(4), 353-364. https://doi.org/10.29333/iji.2019.12423a
Lin, J. W. (2017). A cross-grade study validating the evolutionary pathway of student mental models in electric circuits. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 3099–3137. https://doi.org/10.12973/eurasia.2017.00707a
Lusiyana, A. (2019, April). The problems of integrating multiple representation skills in physics learning. In Journal of Physics: Conference Series (Vol. 1185, No. 1, p. 012035). IOP Publishing.
McGowan, M. & Tall, D. (2001). Flexible Thinking, Consistency, and Stability of Responses:A Study of Divergence. http://www.warwick.ac.uk/staff/David.Tall/drafts/dot2001-mcgowen-tall-draft.pdf.
Mercan, S. (2020). 9. sınıf öğrencilerinin çoklu temsil transfer becerilerinin incelenmesi: Denklem ve eşitsizlikler [Investigation of 9th grade students’ skill in translating among representations: equations and inequalities] Master's thesis. Karamanoğlu Mehmetbey University.
Miles, M. B., & Huberman, A. M., (1994). Qualitative Data Analysis, Second Edition, Sage Publications.
National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM
Pebriana, I. N., Supahar, S., Pradana, P. W., & Mundilarto, M. (2022, January). Investigating multiple representations ability of high school students on linear motion. In 5th International Conference on Current Issues in Education (ICCIE 2021) (pp. 232-237). Atlantis Press.
Puspitaningtyas, E., Hasanah, S. U., Kusairi, S., & Purwaningsih, E. (2021, March). Physics students’ responses when asked to select and solve motion kinematics problems in various representations. In AIP Conference Proceedings (Vol. 2330, No. 1). AIP Publishing.
Rau, M. A. (2017). Conditions for the effectiveness of multiple visual representations in enhancing STEM learning. Educational Psychology Review, 29(4), 717–761. doi:10.1007/s10648-016-9365-3
Ryken, A. E. (2009). Multiple representations as sites for teacher reflection about mathematics learning. Journal of Mathematics Teacher Education, 12, 347-364.
Saputra, A. T., Jumadi, J., Paramitha, D. W., & Sarah, S. (2019). Problem-solving approach in multiple representations of qualitative and quantitative problems in kinematics motion. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 8(1), 89-98. Doi: 10.24042/jipfalbiruni.v8i1.3801
Sert, Ö. (2007). Eighth grade students’ skills in translating among different representations of algebraic concepts. Master thesis. Middle East Technical University.
Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological science, 14(3), 237-250.
Türer, G., & Günhan, B. C. (2022). Türkiye’de matematik eğitiminde çoklu temsiller ile ilgili yapılan çalışmaların incelenmesi [Examining the studies on multiple representations in mathematics education in Turkey]. Journal of Science Mathematics Entrepreneurship and Technology Education, 5(3), 214-236.
Umrotul, U., Jewaru, A. A. L., Kusairi, S., & Pramono, N. A. (2022). The ability to solve physics problems in symbolic and numeric representations. Revista Mexicana de Física E, 19(1 Jan-Jun), 010209-1.
Van Heuvelen A., & Zou, X. (2001). Multiple representations of work energy processes. American Journal of Physics 69, 184. doi: 10.1119/1.1286662
Yener, D., & Güzel, H. (2010). Kinematik konusuna ait problemlerin çözümüne grafik materyallerin etkisi [The effect of graphical materials on problem solving of kinematics].Journal of Ahmet Kelesoglu Education Faculty, 30, 271-279.
DOI: https://doi.org/10.17509/jsl.v7i1.61099
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Zeynep Başkan Takaoğlu
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jl. Dr. Setiabudhi 229 Bandung 40154, West Java, Indonesia