Cover Image

Prospective Physics and Science Teachers' Mental Models about the Concept of Work

Ayşegül Sağlam-Arslan, Işık Saliha Karal, Hava İpek Akbulut

Abstract


Work, as a concept, is often encountered in daily life, but the meaning of work in physics is closely related to power, force, and energy. Studies made about various concepts and subjects have proved that using words in ways different from their scientific meanings has a negative effect on teaching, and causes conceptual complexities and/or generation of alternative mental models. This study aimed to determine the mental models of prospective physics and science teachers about the concept of work. This study was conducted with the participation of 107 prospective teachers in the Physics and Science Teacher Training program. The trainee teachers' understandings were determined by using an achievement test, consisting of three open-ended questions, developed by the researchers. Data obtained were first analyzed according to the level of understanding demonstrated, and then the mental models were determined by using these levels. Four types of mental models about work were identified, specifically the scientific,, the scientific synthesis, the initial synthesis, and the initial models. The synthesis model is the dominant mental model, and it has been developed by prospective teachers from two disciplines.

Full Text:

DOWNLOAD PDF

References


Abraham M. R., Williamson V. M., & Wetsbrook S. L. (1994) A cross-age study of the understanding of five chemistry concepts. J Res Sci Teach, 31(2), 147–165.

Adamczyk, P., & Willson, M. (1996). Using concept maps with trainee physics teachers. Physics Education, 31(6), 374.

Aguiar, O., Sevian, H., & El-Hani, C. N. (2018). Teaching about energy. Science & Education, 27(9-10), 863-893.

Aydın, G., & Balım, A. G. (2005). Yapılandırmacı yaklaşıma göre modellendirilmiş disiplinler arası uygulama: enerji konularının öğretimi. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 38(2), 145-166.

Aydoğmuş, E. (2008). Lise 2 fizik dersi iş-enerji konusunun öğretiminde 5E modelinin öğrenci başarısına etkisi [Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü].

Bächtold, M. (2018). How should energy be defined throughout schooling?. Research in Science Education, 48(2), 345-367.

Bahar, M., Öztürk, E., & Ateş, S. Yapilandirilmiş grid metodu ile lise öğrencilerinin newton’un hareket yasasi, iş, güç ve enerji konusundaki anlama düzeyleri ve hatali kavramlarinin tespiti.

Bennett, J., Hogarth, S., & Lubben, F. (2003). A systematic review of the effects of context-based and Science-Technology-Society (STS) approaches in the teaching of secondary science. EPPI-Centre and University of York.

Borges, A., T., & Gilbert, J., K. (1999). Mental models of electricity. International Journal of Science Education, 21(1), 95-97.

Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. In Developing models in science education (pp. 119-135). Springer, Dordrecht.

Büyükdede, M., & Tanel, R. (2018). Iş-enerji ve itme-momentum konularina yönelik fetemm etkinliklerinin kavramsal anlama üzerine etkisi. Diyalektolog, (19), 379-395.

Berber, N. C. (2008). İş-güç-enerji konusunun öğretiminde pedagojik-analojik modellerin kavramsal değişimin gerçekleşmesine etkisi: Konya ili örneği [Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü].

Cerit Berber, N., & Sarı, M. (2009). Iş-güç-enerji konusunun öğretiminde kavramsal değişimin gerçekleşmesine pedagojik- analojik modellerin etkisi. Gazi Eğitim Fakültesi Dergisi, 29(1), 257-277.

Chanserm, T., Tupsai, J., & Yuenyong, C. (2018). Grade 11 student's mental model of the nature of light. Journal of Physics: Conference Series, 1340(1).

Chevallard, Y. (1989). Rapport au savoir. Séminaire de Didactique des Mathématiques et de l'Informatique.

Chevallard, Y. (1998). Analyse des pratiques enseignantes et didactiques de mathématiques: L’approche anthropologique. Actes de l’Université d’Eté, La Rochelle, IREM de Clermont-Ferrand, 91-120.

Coll, R. K., & Treagust, D.F. (2003). Learners' mental models of metallic bonding: A cross-age study. Science Education, 87, 685-707.

Desianna, I., Nugroho, S. E., & Ellianawati, E. (2019). Phenomenon of buying and selling as bridging analogy of learning work and energy. Physics Communication, 3(1), 10-20.

Doménech, J. L., Gil-Pérez, D., Gras-Martí, A., Guisasola, J., Martínez-Torregrosa, J., Salinas, J., & Vilches, A. (2007). Teaching of energy issues: A debate proposal for a global reorientation. Science & Education, 16(1), 43–64.

Duit, R. (1984) Learning to the energy concept in school-empirical results from the Philippines and West Germany. Physics Education 19(2),59–66.

Erduran Avcı, D. (2019). Fen öğretiminde kavram yanılgıları tespiti ve giderilmesi içinde (s.191-217). Pegem A.

Erduran Avcı, D., Kara, İ., & Karaca, D. (2012). Fen bilgisi öğretmen adaylarının iş konusundaki kavram yanılgıları. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 31(1), 27-39.

Ergin, S. (2011). Fizik eğitiminde 4mat öğretim yönteminin farklı öğrenme stillerine sahip lise öğrencilerinin iş, güç ve enerji konusundaki başarısına etkisi [Unpublished Doctoral Dissertation, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü].

Franco, C., & Colinvaux, D. (2000). Grasping mental models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education. Kluwer Academic Publishers.

Goldring, H., & Osborne, J. (1994). Students' difficulties with energy and related concepts. Physics Education, 29(1), 26.

Gökdere, M., & Çalık, M. (2010). A cross-age study of Turkish students' mental models: An atom concept. Didactica Slovenica – Pedagoska Obzorja, 2, 185-199.

Greca, I. M., & Moreira, M. A. (2001). Mental, physical, and mathematical models in the teaching and learning of physics. Science Education, 86(1), 106-121.

Greca, M. I., & Moreira M. A. (2000). Mental models, conceptual models and modeling. International Journal of Science Education, 22(1) 1-11.

Gutierrez, J., Zuza, K., & Guisasola, J. (2015). What engineering students understand on the first principle of energy in mechanics at introductory physics courses. In EDULEARN15 Proceedings of the 7th International Conference on Education and New Learning Technologies (Barcelona, Spain,) (pp. 6811-6817).

Hannust, T., & Kikas, E. (2007). Children's knowledge of astronomy and its change in the course of learning. Early Childhood Research Quarterly, 22(1), 89-104.

Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011- 1026.

Hartmann, B., & Priemer, B. (2018). Introducing energy through observations and measurements. Physics Education, 53(6), 1-7.

Hırça, N. (2008). 5E modeline göre “iş, güç ve enerji” ünitesiyle İlgili geliştirilen materyallerin kavramsal değişime etkisinin incelenmesi [Unpublished doctoral dissertation, Atatürk University].

İpek Akbulut, H., Şahin, Ç., & Çepni, S. (2013). İş ve enerji konusu ile ilgili kavramsal değişimin incelenmesi: İkili yerleşik öğrenme modeli örneği. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 13(25), 241-268.

İyibil, Ü. (2010). Farklı programlarda öğrenim gören öğretmen adaylarının temel astronomi kavramlarını anlama düzeylerinin ve ilgili kavramlara ait zihinsel modellerinin analizi [Unpublished doctoral dissertation, Karadeniz Teknik Üniversitesi].

Jalmo, T., & Suwandi, T. (2018). Biology education students' mental models on genetic concepts. Journal of Baltic Science Education, 17(3), 474-485.

Kikas, E. (2005). Development of children's knowledge: the Sky, the Earth and the Sun in children's explanations. Electronic Journal of Folklore, 31, 31- 56.

Küçük, M., Çepni, S., & Gökdere, M. (2005). Turkish primary school students alternative conception about work, power and energy. Journal of Physics Teacher Education, 3(2), 22-28.

Kurnaz, M. A., & Sağlam Arslan, A. (2009). Using the anthropological theory of didactics in physics: Characterization of the teaching conditions of energy concept and the personal relations of freshmen to this concept. Journal of Turkish Science Education, 6(1), 72-88.

Kurnaz, M. A. (2007). Enerji kavramının üniversite 1. sınıf seviyesinde öğrenim durumlarının analizi [Unpublished doctoral dissertation, Karadeniz Teknik Üniversitesi].

Kurnaz, M. A. (2011). Enerji konusunda model Tabanlı öğrenme yaklaşımına göre Tasarlanan öğrenme ortamlarının zihinsel model gelişimine etkisi [Unpublished doctoral dissertation, Karadeniz Teknik Üniversitesi].

Lin, J. W., & Chiu, M. H. (2007). Exploring the characteristics and diverse sources of students' mental models of acids and bases. International Journal of Science Education, 29(6), 771-803.

Lubben, F., Netshisualu, T., & Campell, B. (1999). Students' use of cultural metaphors and their scientific understandings related to heating. Science Education, 83, 761-774.

Madanoğlu, N. (2015). 9. Sınıf öğrencilerinin iş ve enerji konusundaki kavramsal anlamalarının incelenmesi [Unpublished master’s thesis, Balıkesir University].

Mustofa, Z., & Asmichatin, A. (2019). Modeling instruction to promote student's understanding of system and model of system of mechanical energy. Abjadia, 3(1), 17-29.

Nongkhunsarn, A., Yuenyong, C., Tupsai, J., & Sranamkam, T. (2019). Grade 11 student's mental model of fluid and analytical thinking in science teaching through Science Technology and Society (STS) approach. Journal of Physics: Conference Series, 1340(1).

Norman, D. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), Mental Models. Lawrence Erlbaum Associates.

Örnek, F. (2008). Models in science education: Applications of models in learning and teaching science. International Journal of Environmental and Science Education, 3(2), 35- 45.

Palmer, D. (2001). Students' alternative conceptions and scientifically acceptable conceptions about gravity. International Journal of Science Education, 23(7), 691- 706.

Pastırmacı, E. (2011). 7. Sınıf öğrencilerinin iş ve enerji konusundaki alternatif fikirlerinin belirlenmesi ve kavramsal gelişimlerinin incelenmesi [Unpublished master's thesis, Balıkesir University].

Putri, N., Samsudin, A., Nugraha, M. G., & Fratiwi, N. J. (2019). The analysis of tenth grade LMM on work and energy. Journal of Physics: Conference Series, 1280(5).

Sağlam-Arslan, A. (2016). Didaktiğin antropolojik teorisi. In E. Bingölbali, S. Arslan, İ. Ö. Zembat (Eds.), Matematik Eğitiminde Teoriler (377-392). Pegem A Akademi.

Sağlam-Arslan, A. (2004). Les équations différentielles en mathématiques et en physique: étude des conditions de leur enseignement et caractérisation des rapports personnels des etudiants de première année d’université a cet objet de savoir [Unpublished Ph.D. thesis, Universite Joseph Fourier].

Şengören, K. S. (2010). Turkish students' mental models of light to explain the single slit diffraction and double slit interference of light: a cross-sectional study. Journal of Baltic Science Education, 9(1), 61-71.

Trumper, R. (1998). A longitudinal study of physics students' conceptions on energy in pre-service training for high school teachers. Journal of Science Education and Technology, 7(4), 311–318.

Ünal-Çoban, G. (2009). Modellemeye dayalı fen öğretiminin öğrencilerin kavramsal anlama düzeylerine, bilimsel süreç becerilerine, bilimsel bilgi ve varlık anlayışlarına etkisi: 7. sınıf ışık ünitesi örneği. [Unpublished doctoral dissertation, Dokuz Eylül University].

Ünal-Çoban, G., Aktamış, H., & Ergin, Ö. (2007). İlköğretim 8. sınıf öğrencilerinin enerjiyle ilgili görüşleri. Kastamonu Eğitim Dergisi, 15(1), 175-184.

Ünal, G., & Ergin, Ö. (2006). Fen eğitimi ve modeller. Milli Eğitim Dergisi, 171, 188-196.

Uzunkavak, M. (2009). Revealing discrimination skills of students between positive and negative work by writing and drawing method. International Journal of Technologic Sciences, 1(2), 10-20.

Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 45-69.

Watts, D. M. (1983). Some alternative views of energy. Physics Education, 18, 213-217.

Yıldırım, A. (1996). Disiplinlerarası öğretim kavramı ve programlar açısından doğurduğu sonuçlar. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 12(12).




DOI: https://doi.org/10.17509/jsl.v3i3.21660

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Ayşegül Sağlam-Arslan, Işık Saliha Karal, Hava İpek Akbulut

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Science Learning is published by Universitas Pendidikan Indonesia
in collaboration with the Indonesian Society of Science Educators
Jl. Dr. Setiabudhi 229 Bandung 40154, West Java, Indonesia
Website: http://www.upi.edu
Email: js
learning@upi.edu