Pencitraan Hiperspektral Inframerah Dekat Pada Model Lapisan Acrylic Alkyd
Abstract
Spektroskopi inframerah dekat (NIRS) memiliki kemampuan identifikasi secara kualitatif dan kuantitatif material padat dan cair tanpa merusak sampel serta memungkinkan pengukuran dalam jumlah besar dalam waktu singkat dengan memanfaatkan rentang energi 1000-2500 nm (10000-4000 cm-1). Penelitian ini menggunakan teknik spektroskopi NIR metode pencitraan hiperspektral yang memungkinkan informasi spasial (posisi) dan spektralnya (identifikasi) diperoleh secara bersamaan sehingga memiliki potensi menggambarkan distribusi konstituen dalam sampel. Penelitian ini bertujuan untuk mengidentifikasi daerah spektrum NIR dan atau bilangan gelombang aktif terhadap material alkid dan akrilik serta menentukan distribusi lapisan alkid yang tersembunyi di bawah lapisan akrilik. Sampel dimodelkan dengan membuat lapisan alkid di atas plat baja yang ditutup dengan lapisan tipis akrilik. Spekrum NIR kemudian diukur pada 64 posisi yang berbeda. Hasil dari penelitian ini mengungkap bahwa distribusi serapan dua dimensi dalam bentuk citra dan transflektans pada bilangan gelombang 4708 cm-1 dapat menginformasikan letak atau posisi lapisan alkid yang tersembunyi di bawah lapisan akrilik. Dapat disimpulkan bahwa spektroskopi NIR dapat memetakan lapisan terselubung di bawah lapisan lain sepanjang material target yang memiliki serapan aktif di daerah inframerah dekat.
Near-infrared spectroscopy (NIRS) has qualitative and quantitative identification capabilities of solid and liquid materials without damaging samples. It allows measurements in large quantities rapidly by utilizing a spectral range of 1000-2500 nm (10000-4000 cm-1). This study used the NIR spectroscopy technique of hyperspectral imaging allowing spatial information (position) and spectral (identification) to be obtained simultaneously to describe the distribution of constituents in the sample. This study aims to identify NIR active wave numbers of alkyd and acrylic and determine the distribution of alkyd hidden under acrylic layers. The sample was modeled by distributing an alkyd layer on top of the steel plate and then entirely covered by an acrylic coating. NIR spectral data were collected at 64 positions. The results of this study revealed that the distribution of two-dimensional absorption in the observed wavenumber of 4708 cm-1 could inform the position of the alkyd hidden under the acrylic layer. It concluded that NIR spectroscopy could map a layer veiled beneath another layer as long as the target material has an active absorption in a near-infrared area.
Full Text:
PDF (Bahasa Indonesia)References
Ozaki Y, Morisawa Y, Ikehata A, Higashi N. Far-ultraviolet spectroscopy in the solid and liquid states: A review. Appl Spectrosc. 2012;66(1):1–25.
Prieto N, Roehe R, Lavín P, Batten G, Andrés S. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Sci [Internet]. 2009;83(2):175–86. Available from: http://dx.doi.org/10.1016/j.meatsci.2009.04.016
Samiei Fard R, Matinfar HR. Capability of vis-NIR spectroscopy and Landsat 8 spectral data to predict soil heavy metals in polluted agricultural land (Iran). Arab J Geosci [Internet]. 2016;9(20). Available from: http://dx.doi.org/10.1007/s12517-016-2780-4
Dixit Y, Casado-Gavalda MP, Cama-Moncunill R, Cama-Moncunill X, Markiewicz-Keszycka M, Cullen PJ, et al. Developments and challenges in online NIR spectroscopy for meat processing. Compr Rev Food Sci Food Saf. 2017;16(6):1172–87.
Magalhães LM, Machado S, Segundo MA, Lopes JA, Páscoa RNMJ. Rapid assessment of bioactive phenolics and methylxanthines in spent coffee grounds by FT-NIR spectroscopy. Talanta [Internet]. 2016;147:460–7. Available from: http://dx.doi.org/10.1016/j.talanta.2015.10.022
Zhao P, Gao G, Zhang L, Cai Q, Lu N, Cheng L, et al. Corrigendum to “Drug-protein binding mechanism of juglone for early pharmacokinetic profiling: Insights from ultrafiltration, multi-spectroscopic and molecular docking methods”. J Pharm Biomed Anal [Internet]. 2017;143:311. Available from: http://dx.doi.org/10.1016/j.jpba.2017.06.051
Jentzsch PV, Ramos LA, Ciobotă V. Handheld Raman spectroscopy for the distinction of essential oils used in the cosmetics industry. Cosmetics. 2015;2(2):162–76.
Sakudo A. Near-infrared spectroscopy for medical applications: Current status and future perspectives. Clin Chim Acta [Internet]. 2016;455:181–8. Available from: http://dx.doi.org/10.1016/j.cca.2016.02.009
Manley M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chem Soc Rev [Internet]. 2014;43(24):8200–14. Available from: http://dx.doi.org/10.1039/c4cs00062e
Lu R. Detection of bruises on apples using near-infrared hyperspectral imaging. Trans Am Soc Agric Eng. 2003;46(2):523–30.
Qin J, Chao K, Kim MS, Lu R, Burks TF. Hyperspectral and multispectral imaging for evaluating food safety and quality. J Food Eng [Internet]. 2013;118(2):157–71. Available from: http://dx.doi.org/10.1016/j.jfoodeng.2013.04.001
Ricciardi P, Delaney JK, Facini M, Zeibel JG, Picollo M, Lomax S, et al. Near infrared reflectance imaging spectroscopy to map paint binders in situ on illuminated manuscripts. Angew Chemie - Int Ed. 2012;51(23):5607–10.
Cséfalvayová L, Strlič M, Karjalainen H. Quantitative NIR chemical imaging in heritage science. Anal Chem. 2011;83(13):5101–6.
Dooley KA, Lomax S, Zeibel JG, Miliani C, Ricciardi P, Hoenigswald A, et al. Mapping of egg yolk and animal skin glue paint binders in early renaissance paintings using near infrared reflectance imaging spectroscopy. Analyst. 2013;138(17):4838–48.
Frisenda R, Niu Y, Gant P, Molina-Mendoza AJ, Schmidt R, Bratschitsch R, et al. Micro-reflectance and transmittance spectroscopy: A versatile and powerful tool to characterize 2D materials. J Phys D Appl Phys. 2017;50(7).
L. Karlinasari, M. Sabed, N. J Wistara, A. Purwanto, and H. Wijayanto. Karakteristik spektra absorbansi NIR spektroskopi kayu acacia mangium WILLD pada 3 umur berbeda. J Ilmu Kehutan. 2014;6(1):45–52.
Rondonuwu FS, Setiawan A, Karwur FF. Determination of glucose concentration in aqueous solution using FT NIR spectroscopy. J Phys Conf Ser. 2019;1307(1):0–6.
Vagnini M, Miliani C, Cartechini L, Rocchi P, Brunetti BG, Sgamellotti A. FT-NIR spectroscopy for non-invasive identification of natural polymers and resins in easel paintings. Anal Bioanal Chem. 2009;395(7):2107–18.
Rosi F, Daveri A, Moretti P, Brunetti BG, Miliani C. Interpretation of mid and near-infrared reflection properties of synthetic polymer paints for the non-invasive assessment of binding media in twentieth-century pictorial artworks. Microchem J [Internet]. 2016;124:898–908. Available from: http://dx.doi.org/10.1016/j.microc.2015.08.019
Schwanninger M, Rodrigues JC, Fackler K. A review of band assignments in near infrared spectra of wood and wood components. J Near Infrared Spectrosc. 2011;19(5):287–308.
DOI: https://doi.org/10.17509/wafi.v6i1.33477
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Wahana Fisika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Wahana Fisika e-ISSN : 2549-1989 (SK no. 0005.25491989/JI.3.1/SK.ISSN/2017.02 ) published by Physics Program , Universitas Pendidikan Indonesia Jl. Dr.Setiabudhi 229 Bandung. The journal is indexed by DOAJ (Directory of Open Access Journal) SINTA and Google Scholar. Contact: Here
Lisensi : Creative Commons Attribution-ShareAlike 4.0 International License.