Visualisasi Aliran Udara pada Kotak Konveksi Udara Menggunakan Adaptive Finite Element Method

Sayahdin Alfat, Abdin Abdin, Rosliana Eso

Abstract


Peristiwa aliran udara pada kotak konveksi menjadi penting untuk dipahami. Selain metode eksperimen, metode numerik menjadi salah satu pendekatan yang realistis dan mudah serta murah. Secara garis besar, studi ini akan menampilkan transfer panas dan aliran udara pada kotak konveksi menggunakan Adaptive Finite Element Method dan profil temperatur serta kecepatan udara di beberapa titik pada kotak konveksi. Simulasi ini mengadaptasi persamaan Rayleigh-Benard sebagai persamaan pembentuk aliran dan Metode Karakteristik sebagai metode diskritiasi waktu. Secara keseluruhan, penentuan solusi numerik berupa transfer panas dan aliran fluida menggunakan FreeFEM++. Parameter waktu yang digunakan selama perhitungan, seperti; \Delta t\ =\ {10}^{-3}\  dan t_{max}\ =\ {10}^3. Beberapa hal yang menjadi catatan dari penelitian ini sebagai berikut; (1) profil temperatur berbeda di setiap titik pada kotak konveksi, temperatur tertinggi dijumpai di sekitar sumber panas sebesar 100\degc dan terendah berada di permukaan ujung tabung yakni 20\degc. (2) Aliran udara masuk melalui sisi kiri tabung dan ke luar melalui sisi lainnya. Ini menyebabkan kecepatan rata-rata di kedua tabung tersebut sama dan bernilai {\bar{u}}_y\ \approx\ 10.2 pada saat t\ \geq\ 0.06. 

References


A. P. Sturman, “Thermal influences on airflow in mountainous terrain,” Progress in Physical Geography, 1987, doi: 10.1177/030913338701100202.

G. T. Bitsuamlak, T. Stathopoulos, and C. Bédard, “Numerical evaluation of wind flow over complex terrain: Review,” Journal of Aerospace Engineering. 2004, doi: 10.1061/(ASCE)0893-1321(2004)17:4(135).

T. Nitis, D. Kitsiou, Z. B. Klaić, M. T. Prtenjak, and N. Moussiopoulos, “The effects of basic flow and topography on the development of the sea breeze over a complex coastal environment,” Quarterly Journal of the Royal Met. Society, 2005, doi: 10.1256/qj.04.42.

G. Qian, Z. Dong, W. Luo, and J. Lu, “Mean airflow patterns upwind of topographic obstacles and their implications for the formation of echo dunes: A wind tunnel simulation of the effects of windward slope,” Journal of Geo. Research: Earth Surface, 2011, doi: 10.1029/2011JF002020.

K. Niachou, I. Livada, and M. Santamouris, “Experimental study of temperature and airflow distribution inside an urban street canyon during hot summer weather conditions. Part II: Airflow analysis,” Building and Environment, 2008, doi: 10.1016/j.buildenv.2007.01.040.

J. Avison, Physics for CXC. United Kingdom: Thomas Nelson and Sons Ltd, 1999.

J. J. Niemela, L. Skrbek, K. R. Sreenivasan, and R. J. Donnelly, “The wind in confined thermal convection,” Journal of Fluid Mechanics, 2001, doi: 10.1017/S0022112001006310.

M. Tabata and A. Suzuki, “Mathematical Modeling and Numerical Simulation of Earth’s Mantle Convection,” 2002.

Y. Jiang, D. Alexander, H. Jenkins, R. Arthur, and Q. Chen, “Natural ventilation in buildings: Measurement in a wind tunnel and numerical simulation with large-eddy simulation,” Journal of Wind Engineering and Industrial Aerodynamics, 2003, doi: 10.1016/S0167-6105(02)00380-X.

S. Murakami, A. Mochida, and K. Hibi, “Three-dimensional numerical simulation of air flow around a cubic model by means of large eddy simulation,” Journal of Wind Eng. and Industrial Aerodynamics, 1987, doi: 10.1016/0167-6105(87)90023-7.

T. Uchida and Y. Ohya, “Large-eddy simulation of turbulent airflow over complex terrain,” Journal of Wind Eng. and Industrial Aerodynamics, 2003, doi: 10.1016/S0167-6105(02)00347-1.

K. Keyhani, P. W. Scherer, and M. M. Mozell, “Numerical simulation of airflow in the human nasal cavity,” Journal of Biomechanical Engineering, 1995, doi: 10.1115/1.2794204.

F. D. Molina-Aiz, H. Fatnassi, T. Boulard, J. C. Roy, and D. L. Valera, “Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses,” Computers and Electronics in Agriculture, 2010, doi: 10.1016/j.compag.2010.03.002.

S. J. Yang and W. S. Fu, “A numerical investigation of effects of a moving operator on airflow patterns in a cleanroom,” Building and Environment, 2002, doi: 10.1016/S0360-1323(01)00080-4.

O. Laguerre, S. ben Amara, J. Moureh, and D. Flick, “Numerical simulation of air flow and heat transfer in domestic refrigerators,” J. of Food Eng., 2007, doi: 10.1016/j.jfoodeng.2006.10.029.

H. Sajjadi, M. Salmanzadeh, G. Ahmadi, and S. Jafari, “Simulations of indoor airflow and particle dispersion and deposition by the lattice Boltzmann method using LES and RANS approaches,” Building and Environment, 2016, doi: 10.1016/j.buildenv.2016.03.006.

C. Vivian, Science Experiments and Amusements for Children. New York: Dover Publications, 1967.

I. Babuvška and W. C. Rheinboldt, “Error Estimates for Adaptive Finite Element Computations,” SIAM Journal on Numerical Analysis, 1978, doi: 10.1137/0715049.

L. Chen and J. Xu, “Stability and accuracy of adapted finite element methods for singularly perturbed problems,” Numerische Mathematik, 2008, doi: 10.1007/s00211-007-0118-6.

N. Roquet and P. Saramito, “An adaptive finite element method for Bingham fluid flows around a cylinder,” Computer Methods in Applied Mechanics and Engineering, 2003, doi: 10.1016/S0045-7825(03)00262-7.

W. Cao, W. Huang, and R. D. Russell, “An r-Adaptive Finite Element Method Based upon Moving Mesh PDEs,” Journal of Computational Physics, 1999, doi: 10.1006/jcph.1998.6151.

K. Key and J. Ovall, “A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling,” Geophysical Journal Int., 2011, doi: 10.1111/j.1365-246X.2011.05025.x.

F. Chillà and J. Schumacher, “New perspectives in turbulent Rayleigh-Bénard convection,” European Physical Journal E, vol. 35, no. 7, Jul. 2012, doi: 10.1140/epje/i2012-12058-1.

F. Hecht, “New development in freefem+,” Journal of Num. Math., 2012, doi: 10.1515/jnum-2012-0013.

Engineering ToolBox, “Convective Heat Transfer,” 2003. https://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html (accessed Sep. 13, 2020).

F. Salata, C. Alippi, A. Tarsitano, I. Golasi, and M. Coppi, “A first approach to natural thermoventilation of residential buildings through ventilation chimneys supplied by solar ponds,” Sustainability (Switzerland), 2015, doi: 10.3390/su7079649.

M. Coppi, A. Quintino, and F. Salata, “Numerical study of a vertical channel heated from below to enhance natural ventilation in a residential building,” International Journal of Ventilation, vol. 12, no. 1, pp. 41–49, 2013, doi: 10.1080/14733315.2013.11684001.

C. Afonso and A. Oliveira, “Solar chimneys: Simulation and experiment,” Energy and Buildings, vol. 32, no. 1, pp. 71–79, 2000, doi: 10.1016/S0378-7788(99)00038-9.

E. Alptekin, M. Özer, M. Top, F. E. Yavuz, and M. A. Ezan, “A Numerical Study on Phase Change Inside a Spherical Capsule,” in Exergetic, Energetic and Environmental Dimensions, Elsevier Inc., 2018, pp. 613–625.

J. Ahrens, B. Geveci, and C. Law, “ParaView: An end-user tool for large-data visualization,” in Visualization Handbook, Elsevier Inc., 2005, pp. 717–731.

G. K. Batchelor, An Introduction to Fluid Dynamics. Cambridge University Press, 2000.

L. American Scientific, “STEM Experiment: Gas Convection - YouTube,” 2018. https://www.youtube.com/watch?v=Ht1NmwlWaCo (accessed Sep. 13, 2020).




DOI: https://doi.org/10.17509/wafi.v5i2.28761

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Wahana Fisika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Wahana Fisika e-ISSN : 2549-1989 (SK no. 0005.25491989/JI.3.1/SK.ISSN/2017.02 ) published by Physics Program ,  Universitas Pendidikan Indonesia Jl. Dr.Setiabudhi 229 Bandung. The journal is indexed by DOAJ (Directory of Open Access Journal) SINTA and Google Scholar. Contact: Here

Creative Commons License Lisensi : Creative Commons Attribution-ShareAlike 4.0 International License.

View Stats