MENEMUKAN KEMBALI RUMUS LUAS PERSEGI PANJANG DENGAN KONSTRUKTIVISME (STUDI KASUS PADA MAHASISWA PGSD)

Isrok'atun Isrok’atun

Abstract


A knowledge is the result from students' self-construction idea, which makes more meaning full of learning process. Sometimes, teachers forget to elicit students’ life experience as their prior knowledge. If this prior knowledge exposed, student will be easily received the new idea, because the students indirectly build their own knowledge. The constructivism point of learning is a teaching and learning process in such a way will make students are mentally active in construct their own knowledge, based on their cognitive structure. It must be considered how the children forming their concept in cognitive structure as the acquisition in geometry concepts. Knowing of the geometry formulas is not a guarantee that the student has thoroughly been learning about the geometry concept. On the other hand, the formula of rectangles’ area is not come instantly, but it can be reformulated by the construction of students’ prior knowledge. I brought them in a specific activity that makes them enjoy and vigorously; students are directed to find a rectangles’ formula.

Keywords: constructivism, build knowledge, discovery, and rectangular formula.

Full Text:

PDF

References


Gunawan, A. (2004). Penguasaan konsep geometri oleh murid SD Negeri 38 Kota Bengkulu. Jurnal Penelitian UNIB. X(1).

Karli, H & Yuliariatiningsih, M. S. (2000). Implementasi KBK 1. Jakarta: Bina Media Informasi.

Kusdwiratri-Setiono. (1983). Teori perkembangan kognitif. Bandung: Fakultas Psikologi Universitas Padjadjaran.

Oakley, L. (2004). Cognitive development. London: Routledge.

Ruseffendi, E. T. (1991). Pengantar kepada Membantu Guru Mengembangkan Kompetensinya dalam Pengajaran Matematika untuk Meningkatkan CBSA. Bandung: Tarsito.

Suherman, E.; Turmudi; Suryadi, D.; Herman, T.; Suhendra; Prabawanto, S.; Nurjanah; & Rohayati, A. (2003). Strategi Pembelajaran Matematika Kontemporer. Bandung: UPI.

Sukahar & Amin, S. M. (1995). Matematika 6 mari berhitung untuk SD kelas 6. Jakarta: Departemen Pendidikan dan Kebudayaan.

Suparno, P. (1997). Filsafat konstruktivisme dalam pendidikan. Yogyakarta: Kanisius.

Suryadi, D. (2005). Penggunaan pendekatan pembelajaran tidak langsung serta pendekatan gabungan langsung dan tidak langsung dalam rangka meningkatkan kemampuan berpikir matematik tingkat tinggi siswa SLTP. (Disertasi). Program Pascasarjana Universitas Pendidikan Indonesia. Bandung: Tidak dipublikasikan.




DOI: https://doi.org/10.53400/mimbar-sd.v2i1.1320

Refbacks

  • There are currently no refbacks.




Copyright (c) 2015 Mimbar Sekolah Dasar

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View Mimbar Sekolah Dasar Stats