HIGH SCHOOL STUDENTS’ LEARNING OBSTACLES IN UNDERSTANDING FRACTIONAL EXPONENTS AND ROOT FORMS

Elah Nurlaelah, Trias Lembayung

Abstract


Fractional exponents and root forms are one of the keys concepts in advanced mathematics courses; students’ dynamics in understanding these more complex mathematical processes consequently merits a thorough analysis. Nineteen high schools students were given a test with a series of fractional exponents and root forms related questions, with a varying degree of complexity. We then analyzed students’ answer and classified the underlying learning obstacles based on errors found in students’ answers. Several didactical and epistemological obstacles were found which indicates that learning design for these concepts needs to be improved.

Keywords


concept image; didactical and ephistimological; learning obstacle

References


Behr, M. J., Lesh, R., Post, T., & Silver, E. A. (1983). Rational number concepts. Acquisition of mathematics concepts and processes, 91-126.

Birenbaum, M., & Tatsuoka, K. K. (1993). Applying an IRT-based cognitive diagnostic model to diagnose students' knowledge states in multiplication and division with exponents. Applied measurement in education, 6(4), 255-268.

Brousseau, G. (2002). Theory of didactical situations in mathematics.New York: Kluwer Academic Publisher.

Ernest, P. (1985). The number line as a teaching aid.Educational Studies in Mathematics, 16(4), 411-424.

Gagatsis, A., Shiakalli, M., & Panaoura, A. (2003). La droite arithmétique comme modèle géométrique de l’addition et de la soustraction des nombres entiers. In Annales de didactique et de sciences cognitives (Vol. 8, pp. 95-112).

Hewson, A. E. (2013). An examination of high school students' misconceptions about methods of exponential equations (Doctoral dissertation).

Krátká,M.(2007).Horizon as epistemological obstacle to understanding infinity. WORKING GROUP 7. Geometrical Thinking 954, 1002.[Online].Diakses darihttp://www. mathematik. uni-dortmund.de-/-rme/CERME5b/ WG7pdf.

Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving.Problems of representation in the teaching and learning of mathematics, 21, 33-40.

Michaelidou, E., & Gagatsis, A. (2003). The use of the geometrical model of number linefor representing equivalence and addition of fractions concerning fifth grade students: Aresearch proposal. In A. Gagatsis (Ed.), Representations and geometrical models inmathematics learning (in greek) (pp. 71-98).

Michaelidou, N., Gagatsis, A., & Pitta-Pantazi, D. (2004). The Number Line as a Representation of Decimal Numbers: A Research with Sixth Grade Students. International Group for the Psychology Of Mathematics Education.

Pinahayu, E. A. R. (2016). Problematika Pembelajaran Matematika Pada Pokok Bahasan Eksponen Dan Alternatif Pemecahannya. Formatif: Jurnal Ilmiah Pendidikan MIPA, 5(3).

Pitta-Pantazi, D., Christou, C., & Zachariades, T. (2007). Secondary school students’ levels of understanding in computing exponents. The Journal of Mathematical Behavior, 26(4), 301-311.

Raftopoulos, A. T. H. A. N. A. S. S. I. O. S. (2002). The spatial intuition of number and the number line. Mediterranean Journal for Research in Mathematics Education, 1(2), 17-36.

Ramazan, A. (2010). Eight graders’ capabilities in exponents: making mental comparisons. practice and theory in systems of education. Volume 5 Number 1 2010.Aksaray University, Aksaray, Turkey.

Reys, R. E., & Yang, D. C. (1998).Relationship between computational performance and number sense among sixth-and eighth-grade students in Taiwan.Journal for Research in Mathematics Education, 225-237.

Rosita, Uliyanti E., & Buwono, S. (2013). Peningkatan Aktivitas Belajar melalui Metode Latihan Pelajaran Matematika Kelas II SDN 42 Kubu Raya.Tersedia: http://jurnal. ntan.ac.id/index.php/jpdpb/article/viewFile/498/pdf. [28 Februari 2015].

Suherman, E. (2003). Strategi pembelajaran matematika kontemporer.Bandung: Universitas Pendidikan Indonesia.

Suratno, T. (2009). Memahami kompleksitas pengajaran-pembelajaran dan kondisi pendidikan dan pekerjaan guru. Tersedia: http://the2the. com/eunica/document/TSuratno_complex_syndrome. pdf [18 Mei 2013].

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational studies in mathematics, 12(2), 151-169.

Tseng,D. (2012). Conceptual and procedural knowledge in mathematics education-in the case of law of exponents.Polygon Spring.

Vinner, Shlomo."Concept definition, concept image and the notion of function."International Journal of Mathematical Education in Science and Technology 14, no. 3 (1983): 293-305.

Wahyuni, W., Anggraini, A., & Rochaminah, S. (2016). Penerapan Metode Latihan untuk Meningkatkan Hasil Belajar Siswa pada Materi Limit Fungsi di Kelas XI IPA SMA Alkhairat Kalukubula.Jurnal Elektronik Pendidikan Matematika Tadulako, 3(3).




DOI: https://doi.org/10.18269/jpmipa.v23i1.16937

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Pengajaran MIPA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JPMIPA http://ejournal.upi.edu/index.php/jpmipa/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Jurnal Pengajaran Matematika dan Ilmu Pengetahuan Alam (JPMIPA) or Journal of Mathematics and Science Teaching 

All rights reserverd. pISSN 1412-0917 eISSN 2443-3616

Copyright © Faculty of Mathematics and Science Education (FPMIPA) Universitas Pendidikan Indonesia (UPI)

 

View JPMIPA Stats