Research Trends in Wireless Communications Using Graphene: Research Trajectories in Antenna Applications

Vanessa García-Pineda, Edison Andrés Zapata-Ochoa, Alejandro Valencia Arias, Oscar David Ossa Molina, Francisco Eugenio López Giraldo

Abstract


Communications require a large amount of network resources to support the heavy traffic generated by the Internet of Things (IoT). As a result, microelectronics and telecommunications have been exploring types of hardware capable of supporting these new network architectures and communication systems. New devices should be designed to offer high speed, ultra-wideband connectivity, and extensive coverage. In addition, they should use eco-friendly materials to respond to the needs of sustainable smart cities and meet the requirements of future communications. This literature review followed the PRISMA statement to identify research trends in the use of graphene in antennas for wireless communication applications. A total of 168 documents were analyzed, and one of the main findings is a considerable rise in research interest in this topic since 2012, with India emerging as the leading contributor of knowledge in this area. Furthermore, most applications have been developed for the terahertz band, and more recent studies have focused on utilizing MIMO technologies for 5G and 6G communication systems. In addition, most research has observed improvements in the performance and efficiency of antennas designed with graphene, observing in some results up to 9.35 dBi of gain and 97.6% in radiation efficiency for applications in the terahertz band.

Keywords


Antennas; Graphene; Next-generation networks; PRISMA; Wireless communication

Full Text:

PDF

References


Abadal, S., Alarcón, E., Cabellos-Aparicio, A., Lemme, M., and Nemirovsky, M. (2013). Graphene-enabled wireless communication for massive multicore architectures. IEEE Communications Magazine, 51(11), 137–143.

Abadal, S., Hosseininejad, S. E., Cabellos-Aparicio, A., and Alarcon, E. (2017). Graphene-based terahertz antennas for area-constrained applications. 2017 40th International Conference on Telecommunications and Signal Processing (TSP), 2017, 817–820.

Abadal, S., Llatser, I., Mestres, A., Lee, H., Alarcon, E., and Cabellos-Aparicio, A. (2015). Time-domain analysis of graphene-based miniaturized antennas for ultra-short-range impulse radio communications. IEEE Transactions on Communications, 63(4), 1470–1482.

Abohmra, A., Abbas, H., Alomainy, A., Ali Imran, M., and Abbasi, Q. H. (2023). Flexible terahertz antenna arrays based on graphene for body-centric wireless communication. 2023 17th European Conference on Antennas and Propagation (EuCAP), 2023, 1–5.

Abohmra, A., Jilani, F., Abbas, H. T., Alomainy, A., Ur-Rehman, M., Imran, M. A., and Abbasi, Q. H. (2019). Flexible and wearable graphene-based terahertz antenna for body-centric applications. 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS), 2019, 1–4.

Abohmra, A., Jilani, F., Abbas, H., Alomainy, A., Imran, M. A., and Abbasi, Q. H. (2019). Hybrid terahertz antenna design for body-centric applications. Antennas and Propagation Conference 2019, 2019, 5.

Akyildiz, I. F., and Jornet, J. M. (2016). Realizing Ultra-Massive MIMO ( 1024 × 1024 ) communication in the (0.06–10) Terahertz band. Nano Communication Networks, 8, 46–54.

Al Husaeni, D. F., and Nandiyanto, A. B. D. (2021). Bibliometric using vosviewer with publish or perish (using google scholar data): from step-by-step processing for users to the practical examples in the analysis of digital learning articles in pre and post covid-19 pandemic. ASEAN Journal of Science and Engineering, 2(1), 19–46.

Alfonso, J. E., and Olaya, J. J. (2019). Influence of Ag nanoparticles on the physical properties of multilayers of graphene. DYNA, 86(211), 49–53.

Alharbi, A. G., and Sorathiya, V. (2022). Ultra-wideband graphene-based micro-sized circular patch-shaped Yagi-like Mimo antenna for terahertz wireless communication. Electronics, 11(9), 1305.

Alibakhshikenari, M., Ali, E. M., Soruri, M., Dalarsson, M., Naser-Moghadasi, M., Virdee, B. S., Stefanovic, C., Pietrenko-Dabrowska, A., Koziel, S., Szczepanski, S., and Limiti, E. (2022). A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems. IEEE Access, 10, 3668–3692.

Al-Mumen, H., Rao, F., Li, W., and Dong, L. (2014). Singular sheet etching of graphene with oxygen plasma. Nano-Micro Letters, 6(2), 116-124.

Alsamhi, S. H., Ma, O., Ansari, M. S., and Almalki, F. A. (2019). Survey on collaborative smart drones and internet of things for improving smartness of smart cities. IEEE Access, 7, 128125–128152.

Anand, S., Sriram Kumar, D., Wu, R. J., and Chavali, M. (2014). Graphene nanoribbon-based terahertz antenna on polyimide substrate. Optik, 125(19), 5546–5549.

Andersson, M. A., Ozcelikkale, A., Johansson, M., Engstrom, U., Vorobiev, A., and Stake, J. (2016). Feasibility of ambient rf energy harvesting for self-sustainable m2m communications using transparent and flexible graphene antennas. IEEE Access, 4, 5850–5857.

Ando, T. (2009). The electronic properties of graphene and carbon nanotubes. NPG Asia Materials, 1(1), 17–21.

Aparicio, M. P., Bakkali, A., Pelegri-Sebastia, J., Sogorb, T., and Bou, V. L. (2016). Radio frequency energy harvesting-sources and techniques. Renewable Energy - Utilisation and System Integration, 10, 61722.

Arapov, K., Jaakkola, K., Ermolov, V., Bex, G., Rubingh, E., Haque, S., Sandberg, H., Abbel, R., de With, G., and Friedrich, H. (2016). Graphene screen‐printed radio‐frequency identification devices on flexible substrates. Physica Status Solidi (RRL) – Rapid Research Letters, 10(11), 812–818.

Aziz, M. (2019). Advanced green technologies toward future sustainable energy systems. Indonesian Journal of Science and Technology, 4(1), 89.

Azizah, N. N., Maryanti, R., and Nandiyanto, A. B. D. (2021). How to search and manage references with a specific referencing style using Google Scholar: From step-by-step processing for users to the practical examples in the referencing education. Indonesian Journal of Multidiciplinary Research, 1(2), 267–294.

Bahrami-Chenaghlou, F., Habibzadeh-Sharif, A., and Ahmadpour, A. (2023). Systematic design and analysis of a compact ultra-low loss graphene-based multilayer hybrid plasmonic waveguide. Photonics and Nanostructures - Fundamentals and Applications, 53, 101088.

Bala, R., and Marwaha, A. (2016). Characterization of graphene for performance enhancement of patch antenna in THz region. Optik, 127(4), 2089–2093.

Balanis, C. A. (1992). Antenna theory: a review. Proceedings of the IEEE, 80(1), 7–23.

Bansal, G., Marwaha, A., Singh, A., Bala, R., and Marwaha, S. (2018). Graphene based wideband arc truncated terahertz antenna for wireless communication. Current Nanoscience, 14(4), 290–297.

Bao, Z., and Chen, X. (2016). Flexible and stretchable devices. Advanced Materials, 28(22), 4177–4179.

Benjamin, S. R., and Miranda R. J. E. J. (2022). Graphene-Based electrochemical sensors for detection of environmental pollutants. Current Opinion in Environmental Science and Health, 29, 100381.

Benlakehal, M. E., Hocini, A., Khedrouche, D., Temmar, M. N., Denidni, T. A., and Shayea, I. (2023). Design and analysis of a 1 × 2 microstrip patch antenna array based on photonic crystals with a graphene load in THZ. Journal of Optics, 52(2), 483–493.

Bharathi, M., Amsaveni, A., and Priyadharshini, R. (2021). Study of MIMO antenna at terahertz frequency. 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), 1–6.

Boudjerda, M., Reddaf, A., Kacha, A., Hamdi-Cherif, K., Alharbi, T. E. A., Alzaidi, M. S., Alsharef, M., and Ghoneim, S. S. M. (2022). Design and optimization of miniaturized microstrip patch antennas using a genetic algorithm. Electronics, 11(14), 2123.

Bravo-Linares, D., Acevedo-Melo, A. M., Ruiz-Patiño, A., Ricaurte, L., Lucio-Arias, D., and Cardona, A. F. (2019). Scientific productivity and cancer-related mortality: A case study of a positive association in Colombia. Journal of Global Oncology, 5, 1–10.

Cabellos-Aparicio, A., Llatser, I., Alarcon, E., Hsu, A., and Palacios, T. (2015). Use of terahertz photoconductive sources to characterize tunable graphene rf plasmonic antennas. IEEE Transactions on Nanotechnology, 14(2), 390–396.

Camargo Amado, R. J., and Sevilla-Abarca, M. E. (2021). Método de funcionalización química para la obtención de óxido de grafeno adherido a la superficie de placas de grafito pirolítica de alta densidad por spray coating ácido. Ingeniería Y Competitividad, 23(2), e21110838.

Cañas-mejía, S. A., Macías-urrego, J. A., and García-pineda, V. (2023). Variables de medición del desempeño para la toma de sistemática de literatura * decisiones en organizaciones deportivas: una revisión performance measurement variables for decision making in sports organizations: A systematic literature review. Critérios. 19(1), 1–16.

Carrasco, E., Tamagnone, M., Mosig, J. R., Low, T., and Perruisseau-Carrier, J. (2015). Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array. Nanotechnology, 26(13), 134002.

Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109–162.

Catherwood, P. A., Bukhari, S. S., Watt, G., Whittow, W. G., and McLaughlin, J. (2018). Body‐centric wireless hospital patient monitoring networks using body‐contoured flexible antennas. IET Microwaves, Antennas and Propagation, 12(2), 203–210.

Chen, H., Zhuo, F., Zhou, J., Liu, Y., Zhang, J., Dong, S., Liu, X., Elmarakbi, A., Duan, H., and Fu, Y. (2023). Advances in graphene-based flexible and wearable strain sensors. Chemical Engineering Journal, 464, 142576.

Chen, Y., Li, J., Li, T., Zhang, L., and Meng, F. (2021). Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon, 180, 163–184.

Colaco, J., and Lohani, R. B. (2022). Performance analysis of microstrip patch antenna using a four-layered substrate of different materials. Materials Today: Proceedings, 52, 1891–1900.

Correas-Serrano, D., Gomez-Diaz, J. S., Alu, A., and Alvarez-Melcon, A. (2015). Electrically and magnetically biased graphene-based cylindrical waveguides: analysis and applications as reconfigurable antennas. IEEE Transactions on Terahertz Science and Technology, 5(6), 951–960.

Crowe, M., and Sheppard, L. (2011). A review of critical appraisal tools show they lack rigor: Alternative tool structure is proposed. Journal of Clinical Epidemiology, 64(1), 79–89.

Dashti, M., and Carey, J. D. (2018). Graphene microstrip patch ultrawide band antennas for THz communications. Advanced Functional Materials, 28(11).

Davin Arkan Admoko, Bambang Darmawan, A. Ana, and Vina Dwiyanti. (2024). A cluster-based bibliometric analysis of the emerging technological landscape in logistics using Vosviewer. Journal of Advanced Research in Applied Sciences and Engineering Technology, 42(2), 234–249.

Davis, D., Birnbaum, L., Ben-Ishai, P., Taylor, H., Sears, M., Butler, T., and Scarato, T. (2023). Wireless technologies, non-ionizing electromagnetic fields and children: Identifying and reducing health risks. Current Problems in Pediatric and Adolescent Health Care, 53(2), 101374.

de Dios-Leyva, M., Morales, A. L., and Duque, C. A. (2020). Magnetoconductivity in quasiperiodic graphene superlattices. Scientific Reports, 10(1), 21284.

Ding, D., Li, R., Yan, J., Liu, J., Fang, Y., and Yu, Y. (2020). Influence of microcracks on silver/polydimethylsiloxane-based flexible microstrip transmission lines. Applied Sciences, 11(1), 5.

Dmitriev, V., de Oliveira, R. M. S., Paiva, R. R., and Rodrigues, N. R. N. M. (2023). Multifunctional THz Graphene Antenna with 360∘ Continuous ϕ-Steering and θ-Control of Beam. Sensors, 23(15), 6900.

Dragoman, M., Neculoiu, D., Bunea, A. C., Deligeorgis, G., Aldrigo, M., Vasilache, D., Dinescu, A., Konstantinidis, G., Mencarelli, D., Pierantoni, L., and Modreanu, M. (2015). A tunable microwave slot antenna based on graphene. Applied Physics Letters, 106(15), 153101.

Edwards, R. S., and Coleman, K. S. (2013). Graphene synthesis: Relationship to applications. Nanoscale, 5(1), 38–51.

El Hassani, O., and Saadi, A. (2023). Towards a full design of a super-wide band slotted antenna array using graphene material for future 6G applications. Results in Optics, 11, 100427.

Elmobarak, H. A., Rahim, S. K. A., Abedian, M., Soh, P. J., Vandenbosch, G. A. E., and Yew Chiong, L. (2017). Assessment of multilayered graphene technology for flexible antennas at microwave frequencies. Microwave and Optical Technology Letters, 59(10), 2604–2610.

Elsadek, H., and Nashaat, D. M. (2008). Multiband and UWB V-shaped antenna configuration for wireless communications applications. IEEE Antennas and Wireless Propagation Letters, 7, 89–91.

Elsheakh, D. N. (2019). Frequency reconfigurable and radiation pattern steering of monopole antenna based on graphene pads. Proceedings of the 2019 9th IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, APWC 2019, 2(1), 436–440.

Elsheakh, D., and Dardeer, O. (2021). Reconfigurable 2×1 CPW-fed rectangular slot antenna array (rsaa) based on graphene for wireless communications. Applied Computational Electromagnetics Society, 36(6), 788–795.

Eslami, A., Sadeghi, M., and Adelpour, Z. (2021). Plasmonic modulator utilizing graphene-HfO2-ITO stack embedded in the silicon waveguide. Optik, 227, 165608.

Ezzulddin, S. K., Hasan, S. O., and Ameen, M. M. (2022). Microstrip patch antenna design, simulation and fabrication for 5G applications. Simulation Modelling Practice and Theory, 116, 102497.

García, A., and Betancur, L. (2017). La visión de la nanotecnología para las radiocomunicaciones en los próximos años. Una perspectiva desde la academia. Ingeniería y Región, 17, 13.

García-Pineda, V., Valencia-Arias, A., Patiño-Vanegas, J. C., Flores Cueto, J. J., Arango-Botero, D., Rojas Coronel, A. M., and Rodríguez-Correa, P. A. (2023). Research trends in the use of machine learning applied in mobile networks: a bibliometric approach and research agenda. Informatics, 10(3), 73.

Gayduchenko, I., Xu, S. G., Alymov, G., Moskotin, M., Tretyakov, I., Taniguchi, T., Watanabe, K., Goltsman, G., Geim, A. K., Fedorov, G., Svintsov, D., and Bandurin, D. A. (2021). Tunnel field-effect transistors for sensitive terahertz detection. Nature Communications, 12(1), 543.

Ghosh, S., Nitin, B., Remanan, S., Bhattacharjee, Y., Ghorai, A., Dey, T., Das, T. K., and Das, N. Ch. (2020). A multifunctional smart textile derived from merino wool/nylon polymer nanocomposites as next generation microwave absorber and soft touch sensor. ACS Applied Materials and Interfaces, 12(15), 17988–18001.

Gomez-Diaz, J. S., and Perruisseau-Carrier, J. (2012). Microwave to THz properties of graphene and potential antenna applications. International Symposium on Antennas and Propagation (ISAP), (2012), 239–242.

Govindaraj, P., Mirabedini, A., Jin, X., Antiohos, D., Salim, N., Aitchison, P., Parker, J., Fuss, F. K., and Hameed, N. (2023). Health and safety perspectives of graphene in wearables and hybrid materials. Journal of Materials Science and Technology, 155, 10–32.

Goyal, R., and Vishwakarma, D. K. (2018). Design of a graphene‐based patch antenna on glass substrate for high‐speed terahertz communications. Microwave and Optical Technology Letters, 60(7), 1594–1600.

Han, C., Jornet, J. M., and Akyildiz, I. (2018a). Ultra-massive MIMO channel modeling for graphene-enabled terahertz-band communications. 2018 IEEE 87th Vehicular Technology Conference (VTC Spring) (2018), 1–5.

Han, J., Lee, J., Lee, J., and Yeo, J. (2018b). Highly stretchable and reliable, transparent and conductive entangled graphene mesh networks. Advanced Materials, 30(3), 1704626.

Harikirubha, S., Baranidharan, V., Saranya, S., Keerthana, K., and Nandhini, M. (2021). Different shapes of microstrip line design using FR4 substrate materials – A comprehensive review. Materials Today: Proceedings, 45, 3404–3408.

Hasan, M., Arezoomandan, S., Condori, H., and Sensale-Rodriguez, B. (2016). Graphene terahertz devices for communications applications. Nano Communication Networks, 10, 68–78.

Huang, X., Leng, T., Zhang, X., Chen, J. C., Chang, K. H., Geim, A. K., Novoselov, K. S., and Hu, Z. (2015a). Binder-free highly conductive graphene laminate for low cost printed radio frequency applications. Applied Physics Letters, 106(20), 203105.

Huang, X., Leng, T., Zhang, X., Chen, J. C., Chang, K. H., Geim, A. K., Novoselov, K. S., and Hu, Z. (2015b). Binder-free highly conductive graphene laminate for low cost printed radio frequency applications. Applied Physics Letters, 106(20), 203105.

Hui, Y., Zu, H., Song, R., Fu, H., Luo, K., Tian, C., Wu, B., Huang, G.-L., Kou, Z., Cheng, X., and He, D. (2023). Graphene-assembled film-based reconfigurable filtering antenna with enhanced corrosion-resistance. Crystals, 13(5), 747.

Hwang, H. J., Kim, S.-Y., Lee, S. K., and Lee, B. H. (2023). Reconfigurable single-layer graphene radio frequency antenna device capable of changing resonant frequency. Nanomaterials, 13(7), 1203.

Inum, R., Rana, Md. M., and Shushama, K. N. (2016). Performance analysis of graphene based nano dipole antenna on stacked substrate. 2016 2nd International Conference on Electrical, Computer and Telecommunication Engineering (ICECTE) (2016), 1–4.

Jain, R., and Dhanjai. (2013). Nano graphene-based sensor for antiarrhythmic agent quinidine in solubilized system. Colloids and Surfaces B: Biointerfaces, 105, 278–283.

Jornet, J. M., & Akyildiz, I. F. (2010). Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band. In Proceedings of the Fourth European Conference on Antennas and Propagation, (2010). 1-5.

Jornet, J. M., and Akyildiz, I. F. (2013). Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE Journal on Selected Areas in Communications, 31(12), 685–694.

Jornet, J. M., and Akyildiz, I. F. (2014). Graphene-based plasmonic nano-transceiver for terahertz band communication. The 8th European Conference on Antennas and Propagation, (2014), 492–496.

Joshi, S., Bobade, H., Sharma, R., and Sharma, S. (2023). Graphene derivatives: Properties and potential food applications. Journal of Industrial and Engineering Chemistry, 123, 1–18.

Kashyap, P. A., Sarmah, K., Dakua, I., and Baruah, S. (2023). Gain and bandwidth enhancement of slotted microstrip antenna using metallic nanofilms for WLAN applications. Journal of King Saud University - Science, 35(1), 102374.

Kaur, M., and Sivia, J. S. (2020). Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm. International Journal of RF and Microwave Computer-Aided Engineering, 30(1), e22000.

Kazemi, A. H., and Mokhtari, A. (2017). Graphene-based patch antenna tunable in the three atmospheric windows. Optik, 142, 475–482.

Khaleel, S. A., Hamad, E. K. I., Parchin, N. O., and Saleh, M. B. (2022). Programmable beam-steering capabilities based on graphene plasmonic thz mimo antenna via reconfigurable intelligent surfaces (RIS) for IoT applications. Electronics, 12(1), 164.

Khan, Md. A. K., Shaem, T. A., and Alim, M. A. (2019). Analysis of graphene based miniaturized terahertz patch antennas for single band and dual band operation. Optik, 194, 163012.

Khan, Md. A. K., Ullah, Md. I., and Alim, M. A. (2021). High-gain and ultrawide-band graphene patch antenna with photonic crystal covering 96.48% of the terahertz band. Optik, 227, 166056.

Khaouani, M., Bencherif, H., Kourdi, Z., Dehimi, L., Hamdoune, A., and Abdi, M. A. (2021). An ultrafast multi-layer Graphene/InGaAs/InAlAs/InAs P-I-N photodetector with 100 GHz bandwidth. Optik, 227, 165429.

Kiani, N., Tavakkol Hamedani, F., and Rezaei, P. (2023). Reconfigurable graphene-gold-based microstrip patch antenna: RHCP to LHCP. Micro and Nanostructures, 175, 207509.

Kiani, N., Tavakkol Hamedani, F., Rezaei, P., Jafari Chashmi, M., and Danaie, M. (2020). Polarization controling approach in reconfigurable microstrip graphene-based antenna. Optik, 203, 163942.

Kiani, N., Tavakol Hamedani, F., and Rezaei, P. (2022). Implementation of a reconfigurable miniaturized graphene-based SIW antenna for THz applications. Micro and Nanostructures, 169, 207365.

Kim, S., Cook, B., Le, T., Cooper, J., Lee, H., Lakafosis, V., Vyas, R., Moro, R., Bozzi, M., Georgiadis, A., Collado, A., and Tentzeris, M. M. (2013). Inkjet‐printed antennas, sensors and circuits on paper substrate. IET Microwaves, Antennas and Propagation, 7(10), 858–868.

Ku, M., Kim, J., Won, J.-E., Kang, W., Park, Y.-G., Park, J., Lee, J.-H., Cheon, J., Lee, H. H., and Park, J.-U. (2020). Smart, soft contact lens for wireless immunosensing of cortisol. Science Advances, 6(28), eabb2891.

Kumar, J., Basu, B., A. Talukdar, F., and Nandi, A. (2018a). Graphene‐based multimode inspired frequency reconfigurable user terminal antenna for satellite communication. IET Communications, 12(1), 67–74.

Kumar, J., Basu, B., Talukdar, F. A., and Nandi, A. (2017a). Graphene based multiband frequency reconfigurable antenna. 2017 IEEE MTT-S International Microwave and RF Conference (IMaRC), (2017), 1–5.

Kumar, J., Basu, B., Talukdar, F. A., and Nandi, A. (2017b). Graphene-based wideband antenna for aeronautical radio-navigation applications. Journal of Electromagnetic Waves and Applications, 31(18), 2046–2054.

Kumar, J., Basu, B., Talukdar, F. A., and Nandi, A. (2018b). Multimode-inspired low cross-polarization multiband antenna fabricated using graphene-based conductive ink. IEEE Antennas and Wireless Propagation Letters, 17(10), 1861–1865.

Kushwaha, R. K., and Karuppanan, P. (2020a). Enhanced radiation characteristics of graphene-based patch antenna array employing photonic crystals and dielectric grating for THz applications. Optik, 200, 163422.

Kushwaha, R. K., and Karuppanan, P. (2020b). Parasitic‐coupled high‐gain graphene antenna employed on PBG dielectric grating substrate for THz applications. Microwave and Optical Technology Letters, 62(1), 439–447.

Lalu, H., and Anujan, T. (2023). Comparative analysis of graphene nanoantenna for different substrate at terahertz frequency. 2023 4th International Conference on Signal Processing and Communication (ICSPC), (2023), 192–195.

Lame, G. (2019). Systematic literature reviews: An introduction. Proceedings of the Design Society: International Conference on Engineering Design, 1(1), 1633–1642.

Lee, C., Wei, X., Kysar, J. W., and Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–388.

Lee, J. S., Oh, J., Jun, J., and Jang, J. (2015). Wireless hydrogen smart sensor based on pt/graphene-immobilized radio-frequency identification tag. ACS Nano, 9(8), 7783–

Leng, T., Huang, X., Chang, K., Chen, J., Abdalla, M. A., and Hu, Z. (2016). Graphene nanoflakes printed flexible meandered-line dipole antenna on paper substrate for low-cost RFID and sensing applications. IEEE Antennas and Wireless Propagation Letters, 15, 1565–1568.

Li, K., Yang, W., Shen, Z., Zhang, X., and Yi, M. (2023). Flexible graphene pressure sensor based on sponge sewn with cotton. Sensors and Actuators A: Physical, 354, 114266.

Lim, H. R., Khoo, K. S., Chia, W. Y., Chew, K. W., Ho, S.-H., and Show, P. L. (2022). Smart microalgae farming with internet-of-things for sustainable agriculture. Biotechnology Advances, 57, 107931.

Liu, Y., Wu, B., Zhang, Q., Li, Y., Gong, P., Yang, J., Park, C. B., and Li, G. (2023). Micro/nano-structure skeleton assembled with graphene for highly sensitive and flexible wearable sensor. Composites Part A: Applied Science and Manufacturing, 165, 107357.

Llatser, I., Kremers, C., Cabellos-Aparicio, A., Jornet, J. M., Alarcón, E., and Chigrin, D. N. (2012a). Graphene-based nano-patch antenna for terahertz radiation. Photonics and Nanostructures - Fundamentals and Applications, 10(4), 353–358.

Llatser, I., Kremers, C., Chigrin, D. N., Jornet, J. M., Lemme, M. C., Cabellos-Aparicio, A., and Alarcon, E. (2012b). Characterization of graphene-based nano-antennas in the terahertz band. 2012 6th European Conference on Antennas and Propagation (EUCAP), 194–198.

Llatser, I., Kremers, C., Chigrin, D. N., Jornet, J. M., Lemme, M. C., Cabellos-Aparicio, A., and Alarcón, E. (2012c). Radiation characteristics of tunable graphennas in the terahertz band. Radioengineering, 21(4), 946–953.

Luckyardi, S., Hurriyati, R., Disman, D., and Dirgantari, P. D. (2022). A Systematic review of the IOT in smart university: Model and contribution. Indonesian Journal of Science and Technology, 7(3), 529–550.

Luo, Y., Zeng, Q., Yan, X., Wu, Y., Lu, Q., Zheng, C., Hu, N., Xie, W., and Zhang, X. (2019). Graphene-based multi-beam reconfigurable THz antennas. IEEE Access, 7, 30802–30808.

Ma, F., Liu, L., Wang, X., Jing, M., Tan, W., and Hao, X. (2020). Rapid production of few layer graphene for energy storage via dry exfoliation of expansible graphite. Composites Science and Technology, 185, 107895.

MacLeod, J. M., and Rosei, F. (2014). Molecular self-assembly on graphene. Small, 10(6), 1038–1049.

Martínez-Guerra, E., Cifuentes-Quintal, M. E., and De Coss, r. (2009). Grafeno: un paso hacia el futuro. Mundo Nano. Revista Interdisciplinaria En Nanociencias y Nanotecnología, 1(2), 15–23.

Mashayekhi, M., Kabiri, P., Nooramin, A. S., and Soleimani, M. (2023). A reconfigurable graphene patch antenna inverse design at terahertz frequencies. Scientific Reports, 13(1), 8369.

Mazo Vivar, A. del, and Velasco Maillo, S. (2023). Determinación de la longitud de onda de las microondas de un horno a través de sus fugas de radiación. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 20(1), 120101.

Mobarok Shamim, Md. H., and Iqbal, S. S. (2017). Analysis of graphene and graphene-copper based hybrid patch antenna for terahertz range wireless communication. 2017 9th IEEE-GCC Conference and Exhibition (GCCCE), 2017, 1–9.

Mohanty, M. N. (2017). Design of fractal antenna for wireless multimedia communication. 2017 International Conference on Information Technology (ICIT), 2017, 68–72.

Morales-Centla, N., Torrealba-Melendez, R., Tamariz-Flores, E. I., López-López, M., Arriaga-Arriaga, C. A., Munoz-Pacheco, J. M., and Gonzalez-Diaz, V. R. (2022). Dual-band cpw graphene antenna for smart cities and IOT applications. Sensors, 22(15), 5634.

Nag, A., Mitra, A., and Mukhopadhyay, S. C. (2018). Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical, 270, 177–194.

Naghdehforushha, S. A., and Moradi, G. (2018). High directivity plasmonic graphene-based patch array antennas with tunable THz band communications. Optik, 168, 440–445.

Nissanov (Nissan), U., and Singh, G. (2023). Grounded coplanar waveguide microstrip array antenna for 6G wireless networks. Sensors International, 4, 100228.

Palacios, T., Hsu, A., and Wang, H. (2010). Applications of graphene devices in RF communications. IEEE Communications Magazine, 48(6), 122–128.

Pan, K., Leng, T., Jiang, Y., Fang, Y., Zhou, X., Abdalla, M. A., Ouslimani, H., and Hu, Z. (2019). Graphene printed UWB monopole antenna for wireless communication applications. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2019, 1739–1740.

Papageorgiou, D. G., Kinloch, I. A., and Young, R. J. (2017). Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 90, 75–127.

Pierantoni, L., Mencarelli, D., and Coccetti, F. (2013). Graphene-based wireless communications systems: Analysis of the EM-quantum transport of coupled nano-patch antennas. 2013 IEEE Wireless Power Transfer (WPT), 2013, 66–68.

Pineda, V. G., and Urrego, J. A. M. (2023). Identification of the information and communication technology (ICT) sector in the city of Medellín through innovation capacities and elements of Industry 4.0. International Journal of Technology, Policy and Management, 23(2), 216–244.

Prauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., and Musilek, P. (2018). Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors, 18(8), 2446.

Ram, P., Masoodhu Banu, N. M., and Rachel Jeeva Light, R. (2023). Design and testing of graphene-based screen-printed antenna on flexible substrates for wireless energy harvesting applications. IETE Journal of Research, 69(6), 3604-3615.

Rezaei, M. H., and Zarifkar, A. (2023). Optical set-reset flip-flop based on dielectric-loaded graphene-plasmonic waveguides. Optics and Laser Technology, 162, 109285.

Riaz, A., Khan, S., and Arslan, T. (2023). Design and modelling of graphene-based flexible 5g antenna for next-generation wearable head imaging systems. Micromachines, 14(3), 610.

Sa’don, S. N. H., Jamaluddin, M. H., Althuwayb, A., and Alali, B. (2024). A review: The influence of graphene material integration in antenna characteristics in the presence of bias for fifth and sixth generation wireless communication application. Nano Communication Networks, 39, 100483.

Sa’don, S. N. H., Jamaluddin, M. H., Kamarudin, M. R., Ahmad, F., Yamada, Y., Kamardin, K., and Idris, I. H. (2019). Analysis of graphene antenna properties for 5G applications. Sensors, 19(22), 4835.

Sa’don, S. N. H., Jamaluddin, M. H., Kamarudin, M. R., Ahmad, F., Yamada, Y., Kamardin, K., Idris, I. H., and Seman, N. (2020). Characterisation of tunable graphene antenna. AEU - International Journal of Electronics and Communications, 118, 153170.

Saha, J. K., and Dutta, A. (2022). A Review of graphene: Material synthesis from biomass sources. Waste and Biomass Valorization, 13(3), 1385–1429.

Sarycheva, A., Polemi, A., Liu, Y., Dandekar, K., Anasori, B., and Gogotsi, Y. (2018). 2D titanium carbide (MXene) for wireless communication. Science Advances, 4(9), eaau0920.

Schwierz, F. (2013). Graphene transistors: Status, prospects, and problems. Proceedings of the IEEE, 101(7), 1567–1584.

Secor, E. B., Prabhumirashi, P. L., Puntambekar, K., Geier, M. L., and Hersam, M. C. (2013). Inkjet printing of high conductivity, flexible graphene patterns. The Journal of Physical Chemistry Letters, 4(8), 1347–1351.

Seyedsharbaty, M. M., and Sadeghzadeh, R. A. (2017). Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load. Optical and Quantum Electronics, 49(6), 221.

Shams, S. S., Zhang, L. S., Hu, R., Zhang, R., and Zhu, J. (2015). Synthesis of graphene from biomass: A green chemistry approach. Materials Letters, 161, 476–479.

Sharifi, H., Pourziad, A., and Bemani, M. (2022). Nano optical temperature sensor based on fiber Bragg grating using graphene. Results in Optics, 9, 100318.

Shen, L. F., Xie, J. P., and Wang, Z. H. (2021). Tunable TM modes in a slab waveguide including a graphene-dielectric multilayer structure. Optik, 227, 165414.

Singh, J. (2010). Mendeley: A free research management tool for desktop and web. Journal of Pharmacology and Pharmacotherapeutics, 1(1), 62–63.

Singh, K., Sharma, S., Singh, B., Gupta, M., and Tripathi, C. C. (2022). Fabrication of graphene, graphite and multi wall carbon nano tube based thin films and their potential application as strain sensor. Thin Solid Films, 761, 139540.

Sirisha Mrunalini, L. N., and Arun, M. (2016). Novel dual polarized graphene-based antenna for wireless communications in THz band. 2016 3rd International Conference on Emerging Electronics (ICEE), 2016, 1–4.

Soleh, A., Saisahas, K., Promsuwan, K., Saichanapan, J., Thavarungkul, P., Kanatharana, P., Meng, L., Mak, W. C., and Limbut, W. (2023). A wireless smartphone-based “tap-and-detect” formaldehyde sensor with disposable nano-palladium grafted laser-induced graphene (nanoPd@LIG) electrodes. Talanta, 254, 124169.

Song, R., Chen, X., Jiang, S., Hu, Z., Liu, T., Calatayud, D., Mao, B., and He, D. (2021). A graphene-assembled film-based MIMO antenna array with high isolation for 5g wireless communication. Applied Sciences, 11(5), 2382.

Song, R., Mao, B., Wang, Z., Hui, Y., Zhang, N., Fang, R., Zhang, J., Wu, Y., Ge, Q., Novoselov, K. S., and He, D. (2023). Comparison of copper and graphene-assembled films in 5G wireless communication and THz electromagnetic-interference shielding. Proceedings of the National Academy of Sciences, 120(9), e2209807120.

Stoppa, M., and Chiolerio, A. (2014). Wearable electronics and smart textiles: A critical review. Sensors, 14(7), 11957–11992.

Subbaraman, H., Pham, D. T., Xu, X., Chen, M. Y., Hosseini, A., Lu, X., and Chen, R. T. (2013). Inkjet-printed two-dimensional phased-array antenna on a flexible substrate. IEEE Antennas and Wireless Propagation Letters, 12, 170–173.

Tabatabaeian, Z. S. (2021). Graphene load for harmonic rejection and increasing the bandwidth in Quasi Yagi–Uda array THz antenna for the 6G wireless communication. Optics Communications, 499, 127272.

Tang, D., Wang, Q., Wang, Z., Liu, Q., Zhang, B., He, D., Wu, Z., and Mu, S. (2018). Highly sensitive wearable sensor based on a flexible multi-layer graphene film antenna. Science Bulletin, 63(9), 574–579.

Tang, D., Zhang, B., Liu, C., Zhang, J., He, D., and Wu, Z. (2017). Study of a metallic antenna backed by graphene-based reflector. 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 2017, 1–3.

Tao, B., Yao, T., Miao, F., and Zang, Y. (2023). Passive RFID microstrip photosensitive sensor based on TiO2/rGO/CuO composite. Vacuum, 208, 111736.

Thanh Tung, T., Chen, S. J., Fumeaux, C., Kim, T., and Losic, D. (2021). N-doped reduced graphene oxide-PEDOT nanocomposites for implementation of a flexible wideband antenna for wearable wireless communication applications. Nanotechnology, 32(24), 245711.

Tian, W., Fang, Z., Wang, X., and Costas, R. (2024). A multi-dimensional analysis of usage counts, Mendeley readership, and citations for journal and conference papers. Scientometrics, 129(2), 985–1013.

Tura, N., and Ojanen, V. (2022). Sustainability-oriented innovations in smart cities: A systematic review and emerging themes. Cities, 126, 103716.

Ullah, Z., Witjaksono, G., Nawi, I., Tansu, N., Irfan Khattak, M., and Junaid, M. (2020). A Review on the development of tunable graphene nanoantennas for terahertz optoelectronic and plasmonic applications. Sensors, 20(5), 1401.

Upender, P. (2024). Graphene-infused multi-port circularly polarized dielectric resonator antenna with polarization switching. Optical and Quantum Electronics, 56(5), 876.

Urcuyo Solórzano, R., Cordero Solano, K. V., and Gonzalez Flores, D. A. (2021). Perspectivas y aplicaciones reales del grafeno después de 16 años de su descubrimiento. Revista Colombiana de Química, 50(1), 51–85.

Vakil, A., and Bajwa, H. (2014). Energy harvesting using Graphene based antenna for UV spectrum. IEEE Long Island Systems, Applications and Technology (LISAT) Conference 2014, 1–4.

Wang, W., Ma, C., Zhang, X., Shen, J., Hanagata, N., Huangfu, J., and Xu, M. (2019). High-performance printable 2.4 GHz graphene-based antenna using water-transferring technology. Science and Technology of Advanced Materials, 20(1), 870–875.

Wangsupphaphol, A., Phichaisawat, S., and Lengkayan, R. (2023). Alternative energy options for a Thai durian farm: feasibility study and experiments for the combination of solar photovoltaics and repurposed lithium-ion batteries. Indonesian Journal of Science and Technology, 9(1), 125–144.

Xia, K., Zhan, H., and Gu, Y. (2017). Graphene and carbon nanotube hybrid structure: A review. Procedia IUTAM, 21, 94–101.

Yan, S., Adcock, J., and Ding, Y. (2021). Graphene on silicon photonics: Light modulation and detection for cutting-edge communication technologies. Applied Sciences, 12(1), 313.

Yiğit, H., and Karayahşi, K. (2023). A novel model-based technique to improve design processes for microstrip antennas. AEU-International Journal of Electronics and Communications, 162, 154570.

Zhang, M., Yang, M., Okigawa, Y., Yamada, T., Nakajima, H., Iizumi, Y., and Okazaki, T. (2022). Patterning of graphene using wet etching with hypochlorite and UV light. Scientific Reports, 12(1), 4541.

Zhong, Y. L., Tian, Z., Simon, G. P., and Li, D. (2015). Scalable production of graphene via wet chemistry: progress and challenges. Materials Today, 18(2), 73–78.

Zhou, X., Leng, T., Pan, K., Abdalla, M. A., and Hu, Z. (2020). Graphene Printed Flexible and Conformal Array Antenna on Paper Substrate for 5.8GHz Wireless Communications. 2020 14th European Conference on Antennas and Propagation (EuCAP), 2020, 1–4.

Zhou, X., Leng, T., Pan, K., Hu, Z., and Abdalla, M. (2021). Graphene printed antenna array for wireless communication applications. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 2021, 1621–1622.




DOI: https://doi.org/10.17509/ijost.v9i3.75239

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats