Dye-Doped Fe3O4 Nanoparticles for Magnetically Controlling Random Laser Parameters at Visible Wavelengths: Literature Review and Experiment
Abstract
Keywords
Full Text:
PDFReferences
Asmara, Y. P., and Kurniawan, T. (2018). Corrosion prediction for corrosion rate of carbon steel in oil and gas environment: A review. Indonesian Journal of Science and Technology, 3(1), 64-74.
Bachelard, N., Gigan, S., Noblin, X., and Sebbah, P. (2014). Adaptive pumping for spectral control of random lasers. Nature Physics, 10(6), 426-431.
Bajpai, A. K., and Gupta, R. (2010). Synthesis and characterization of magnetite (Fe3O4)—Polyvinyl alcohol‐based nanocomposites and study of superparamagnetism. Polymer Composites, 31(2), 245-255.
Brojabasi, S., Muthukumaran, T., Laskar, J. M., and Philip, J. (2015). The effect of suspended Fe3O4 nanoparticle size on magneto-optical properties of ferrofluids. Optics Communications, 336, 278-285.
Cerdán, L., Costela, A., Durán-Sampedro, G., and García-Moreno, I. (2012). Random lasing from sulforhodamine dye-doped polymer films with high surface roughness. Applied Physics B, 108(4), 839-850.
Chen, S. J., Shi, J. W., Zhai, T. R., Wang, Z. N., Liu, D. H., and Chen, X. (2011). Wavelength variation of a random laser with concentration of a gain material. Chinese Physics Letters, 28(10), 104204.
Chung, M. F., and Fu, C. M. (2011). Optical transmittance and dynamic properties of ferrofluids fe3o4 under dc-biased magnetic fields. IEEE Transactions on Magnetics, 47(10), 3170-3172.
Dai, H. T., Gao, M. N., Xue, Y. X., Xiao, A. X., Ahmad, A., Mohamed, Z., and Feng, S. Z. (2019). Magnetically tunable random lasing from polymer dispersed liquid crystal doped ferromagnetic nanoparticles in capillary. AIP Advances, 9(11), 115015.
Ejbarah, R. A., Jassim, J. M., and Hamidi, S. M. (2020). Random laser action under picosecond laser pumping. Optical and Quantum Electronics, 52(10), 1-8.
Jing, D., Sun, L., Jin, J., Thangamuthu, M., and Tang, J. (2020). Magneto-optical transmission in magnetic nanoparticle suspensions for different optical applications: a review. Journal of Physics D: Applied Physics, 54(1), 013001.
Kedia, S., and Sinha, S. (2017). Random laser emission at dual wavelengths in a donor-acceptor dye mixture solution. Results in Physics, 7, 697-704.
Knitter, S., Kues, M., Haidl, M., and Fallnich, C. (2013). Linearly polarized emission from random lasers with anisotropically amplifying media. Optics Express, 21(25), 31591-31603.
Koo, K. N., Ismail, A. F., Othman, M. H. D., Bidin, N., and Rahman, M. A. (2019). Preparation and characterization of superparamagnetic magnetite (Fe3O4) nanoparticles: A short review. Malaysian Journal of Fundamental and Applied Sciences, 15(1), 23-31.
Kumar, B., Homri, R., Maurya, S. K., Lebental, M., and Sebbah, P. (2021). Localized modes revealed in random lasers. Optica, 8(8), 1033-1039.
Lau, S. P., Yang, H., Yu, S. F., Yuen, C., Leong, E. S., Li, H., and Hng, H. H. (2005). Flexible ultraviolet random lasers based on nanoparticles. Small, 1(10), 956-959.
Leong, Y., Alia, F., and Kurniawan, T. (2016). High temperature oxidation behavior of T91 steel in dry and humid condition. Indonesian Journal of Science and Technology, 1(2), 232-237.
Liao, Y. M., Lai, Y. C., Perumal, P., Liao, W. C., Chang, C. Y., Liao, C. S., and Chen, Y. F. (2016). Highly stretchable label‐like random laser on universal substrates. Advanced Materials Technologies, 1(6), 1600068.
Lin, J. H., and Hsiao, Y. L. (2014). Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes. Optical Materials Express, 4(8), 1555-1563.
Maarouf, F. E., Saoiabi, S., Azzaoui, K., Khalil, H., Khalil, M., El Yahyaoui, A., and Sabbahi, R. (2022). Amorphous iron phosphate: Inorganic sol-gel synthesis-sodium and potassium insertion. Indonesian Journal of Science and Technology, 7(2), 187-202.
Maryanti, R., Hufad, A., Nandiyanto, A. B.D., and Tukimin, S. (2021). Teaching the corrosion of iron particles in saline water to students with special needs. Journal of Engineering Science and Technology, 16(1), 601-611.
Meng, X., Fujita, K., Murai, S., and Tanaka, K. (2009). Coherent random lasers in weakly scattering polymer films containing silver nanoparticles. Physical Review A, 79(5), 053817.
Nguyen, M. D., Tran, H. V., Xu, S., and Lee, T. R. (2021). Fe3O4 Nanoparticles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Applied Sciences, 11(23), 11301.
Perumbilavil, S., Piccardi, A., Barboza, R., Buchnev, O., Kauranen, M., Strangi, G., and Assanto, G. (2018). Beaming random lasers with soliton control. Nature Communications, 9(1), 1-7.
Popov, O., Zilbershtein, A., and Davidov, D. (2006). Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength. Applied Physics Letters, 89(19), 191116.
Rashidi, M., Li, Z., Jagadish, C., Mokkapati, S., and Tan, H. H. (2021). Controlling the lasing modes in random lasers operating in the Anderson localization regime. Optics Express, 29(21), 33548-33557.
Schönhuber, S., Brandstetter, M., Hisch, T., Deutsch, C., Krall, M., Detz, H., Andrews, A.M., Strasser, G., Rotter, S. and Unterrainer, K. (2016). Random lasers for broadband directional emission. Optica, 3(10), 1035-1038.
Shima, P. D., Philip, J., and Raj, B. (2009). Magnetically controllable nanofluid with tunable thermal conductivity and viscosity. Applied Physics Letters, 95(13), 133112.
Taylor, R. M., Maher, B. A., and Self, P. G. (1986). Magnetite in soils: I. The synthesis of single-domain and superparamagnetic magnetite. Clay Minerals, 22(4), 411-422.
Tommasi, F., Ignesti, E., Lepri, S., and Cavalieri, S. (2016). Robustness of replica symmetry breaking phenomenology in random laser. Scientific Reports, 6(1), 1-8.
Tsai, C. Y., Liao, Y. M., Liao, W. C., Lin, W. J., Perumal, P., Hu, H. H., Lin, S.Y., Chang, C.H., Cai, S.Y., Sun, T.M. and Chen, Y. F. (2017). Magnetically controllable random lasers. Advanced Materials Technologies, 2(12), 1700170.
Turitsyn, S. K., Babin, S. A., Churkin, D. V., Vatnik, I. D., Nikulin, M., and Podivilov, E. V. (2014). Random distributed feedback fibre lasers. Physics Reports, 542(2), 133-193.
Wetter, N., and Jimenez-Villar, E. (2019). Random laser materials: from ultrahigh efficiency to very low threshold (Anderson localization). Journal of Materials Science: Materials in Electronics, 30(18), 16761-16773.
Wiersma, D. S. (2008). The physics and applications of random lasers. Nature Physics, 4(5), 359-367.
Ye, L., Lu, J., Lv, C., Feng, Y., Zhao, C., Wang, Z., and Cui, Y. (2015). Random lasing action in magnetic nanoparticles doped dye solutions. Optics Communications, 340, 151-154.
Ye, L., Zhao, C., Feng, Y., Gu, B., Cui, Y., and Lu, Y. (2017). Study on the polarization of random lasers from dye-doped nematic liquid crystals. Nanoscale Research Letters, 12(1), 1-8.
Yu, S. F. (2015). Electrically pumped random lasers. Journal of Physics D: Applied Physics, 48(48), 483001.
Zhang, H., Feng, G., Zhang, H., Yang, C., Yin, J., and Zhou, S. (2017). Random laser based on Rhodamine 6G (Rh6G) doped poly (methyl methacrylate) (PMMA) films coating on ZnO nanorods synthesized by hydrothermal oxidation. Results in Physics, 7, 2968-2972.
DOI: https://doi.org/10.17509/ijost.v7i3.51453
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Universitas Pendidikan Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Science and Technology is published by UPI.
View My Stats