Oil Palm Empty Fruit Bunch Waste Pretreatment with Benzotriazolium-Based Ionic Liquids for Cellulose Conversion to Glucose: Experiments with Computational Bibliometric Analysis
Abstract
This study aims to utilize benzotriazolium salt-ionic liquids (ILs) as solvents in the oil palm empty fruit bunch (EFB) waste pretreatment along with bibliometric analysis using VOSviewer. Three ILs have been synthesized and tested as EFB solvents by a microwave-heating method. Those are organic salts of 1,3-methyl-octyl-1,2,3-benzotriazolium ([MOBzt]+) cation with three kinds of anions such as bromide ([Br]-), acetate ([CH3COO]-), and thiocyanate ([SCN]-). The bibliometric analysis showed that new research needs to be conducted to improve the development of research relating to biomass pretreatment. The highest solubility of EFB is in [MOBzt]CH3COO is about 7,5% w/w. The effect of anions on the ability to dissolve EFB is CH3COO->SCN->Br-. When subject to ILs pretreatment, EFB exhibited increased cellulose crystallinity, changed in the structure of cellulose I to cellulose II, reduced particle size, and decreased lignin content compared to untreated one, improving the glucose yield from enzymatic hydrolysis. The highest glucose yield (1,237 mg/mL) was obtained when the EFB was pretreated by [MOBzt]CH3COO with enzymatic hydrolysis for 24 hours. This research is expected to contribute to the development of new biomass pretreatment methods.
Keywords
Full Text:
PDFReferences
Adu, C., Zhu, C., Jolly, M., Richardson, R. M., and Eichhorn, S. J. (2021). Continuous and sustainable cellulose filaments from ionic liquid dissolved paper sludge nanofibres. Journal of Cleaner Production, 280, 124503.
Albornoz-Palma, G., Ching, D., Valerio, O., Mendonça, R. T., and Pereira, M. (2020). Effect of lignin and hemicellulose on the properties of lignocellulose nanofibril suspensions. Cellulose, 27(18), 10631–10647.
Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., and Smith, D. L. (2021). Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews, 139(2020), 110691.
Anwar, Z., Gulfraz, M., and Irshad, M. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. Journal of Radiation Research and Applied Sciences, 7(2), 163-173.
Baig, K. S., Wu, J., and Turcotte, G. (2019). Future prospects of delignification pretreatments for the lignocellulosic materials to produce second generation bioethanol. International Journal of Energy Research, 2018, 1–17.
Barron, C., Devaux, M. F., Foucat, L., Falourd, X., Looten, R., Joseph-Aime, M., Durand, S., Bonnin, E., Lapierre, C., Saulnier, L., Rouau, X., and Guillon, F. (2021). Enzymatic degradation of maize shoots: monitoring of chemical and physical changes reveals different saccharification behaviors. Biotechnology for Biofuels, 14(1), 1–20.
Beig, B., Riaz, M., Raza Naqvi, S., Hassan, M., Zheng, Z., Karimi, K., Pugazhendhi, A., Atabani, A. E., and Thuy Lan Chi, N. (2021). Current challenges and innovative developments in pretreatment of lignocellulosic residues for biofuel production: A review. Fuel, 287, 119670.
Ben Hmad, I., and Gargouri, A. (2020). Ionic liquid-tolerant cellulase system of Stachybotrys microspora exploited in the in situ saccharification of lignocellulosic biomass. Journal of Molecular Liquids, 310, 113167.
Bensah, E. C., and Mensah, M. (2013). Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. International Journal of Chemical Engineering, 2013, 1-21.
Candido, R. G., and Gonçalves, A. R. (2019). Evaluation of two different applications for cellulose isolated from sugarcane bagasse in a biorefinery concept. Industrial Crops and Products, 142, 111616.
Chan, Y. H., Yusup, S., Quitain, A. T., Uemura, Y., and Sasaki, M. (2014). Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction. The Journal of Supercritical Fluids, 95, 407-412.
Cheah, W. Y., Sankaran, R., Show, P. L., Ibrahim, T. N. B. T., Chew, K. W., Culaba, A., and Jo-Shu, C. (2020). Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Research Journal, 7(1), 1115.
Chen, D., Gao, D., Capareda, S. C., Huang, S., and Wang, Y. (2019). Effects of hydrochloric acid washing on the microstructure and pyrolysis bio-oil components of sweet sorghum bagasse. Bioresource Technology, 277, 37–45.
Chen, H., Liu, Z., Chen, X., Chen, Y., Dong, Z., Wang, X., and Yang, H. (2020). Comparative pyrolysis behaviors of stalk, wood and shell biomass: Correlation of cellulose crystallinity and reaction kinetics. Bioresource Technology, 310, 123498.
Chen, S. S., Maneerung, T., Tsang, D. C., Ok, Y. S., and Wang, C. H. (2017). Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chemical Engineering Journal, 328, 246-273.
Chen, W.-H., Nižetić, S., Sirohi, R., Huang, Z., Luque, R., M.Papadopoulos, A., Sakthivel, R., Phuong Nguyen, X., and Tuan Hoang, A. (2022). Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review. Bioresource Technology, 344, 126207.
Chuetor, S., Panakkal, E. J., Ruensodsai, T., Cheenkachorn, K., Kirdponpattara, S., Cheng, Y. S., and Sriariyanun, M. (2022). Improvement of enzymatic saccharification and ethanol production from rice straw using recycled ionic liquid: The effect of anti-solvent mixture. Bioengineering, 9(3), 1-15.
Dias, R. M., da Costa Lopes, A. M., Silvestre, A. J. D., Coutinho, J. A. P., and da Costa, M. C. (2020). Uncovering the potentialities of protic ionic liquids based on alkanolammonium and carboxylate ions and their aqueous solutions as non-derivatizing solvents of Kraft lignin. Industrial Crops and Products, 143, 111866.
Dolah, R., Karnik, R., and Hamdan, H. (2021). A comprehensive review on biofuels from oil palm empty bunch (EFB): Current status, potential, barriers and way forward. Sustainability (Switzerland), 13(18), 1-29.
Elgharbawy, A. A., Alam, M. Z., Moniruzzaman, M., and Goto, M. (2016). Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochemical Engineering Journal, 109, 252-267.
Fatimah, S., Ragadhita, R., Al Husaeni, D.F. and Nandiyanto, A.B.D. (2022). How to calculate crystallite size from x-ray diffraction (XRD) using scherrer method. ASEAN Journal of Science and Engineering, 2(1), 65-76.
Fauziah, A., and Nandiyanto, A. B. D. (2022). A bibliometric analysis of nanocrystalline cellulose production research as drug delivery system using vosviewer. Indonesian Journal of Multidiciplinary Research, 2(2), 333-338.
Forsyth, S. A., and MacFarlane, D. R. (2003). 1-Alkyl-3-methylbenzotriazolium salts: Ionic solvents and electrolytes. Journal of Materials Chemistry, 13(10), 2451-2456.
Halder, P., Kundu, S., Patel, S., Ramezani, M., Parthasarathy, R., and Shah, K. (2019). A Comparison of ionic liquids and organic solvents on the separation of cellulose-rich material from river red gum. BioEnergy Research, 12(2), 275–291.
Hoang, A. T., Nižetić, S., Ong, H. C., Mofijur, M., Ahmed, S. F., Ashok, B., Bui, V. T. V., and Chau, M. Q. (2021). Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere, 281, 130878.
Huang, C., Jiang, X., Shen, X., Hu, J., Tang, W., Wu, X., Ragauskas, A., Jameel, H., Meng, X., and Yong, Q. (2022). Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renewable and Sustainable Energy Reviews, 154, 111822.
Jablonský, M., Škulcová, A., Malvis, A., and Šima, J. (2018). Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. Journal of Biotechnology, 282, 46-66.
Jouzani, G. S., and Taherzadeh, M. J. (2015). Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: A comprehensive review. Biofuel Research Journal, 2(1), 152-195.
Kaltschmitt, M. (2019). Renewable energy from biomass: Introduction in energy from organic materials (Biomass). Energy from Organic Materials (Biomass), 2,1-14.
Khatiwada, D., Palmén, C., and Silveira, S. (2021). Evaluating the palm oil demand in Indonesia: production trends, yields, and emerging issues. Biofuels, 12(2), 135–147.
Krugly, E., Pauliukaityte, I., Ciuzas, D., Bulota, M., Peciulyte, L., and Martuzevicius, D. (2022). Cellulose electrospinning from ionic liquids: The effects of ionic liquid removal on the fiber morphology. Carbohydrate Polymers, 285, 119260.
Lee, H. V., Hamid, S. B. A., and Zain, S. K. (2014). Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. The Scientific World Journal, 2014, 1-20.
Lee, S. H., Doherty, T. V., Linhardt, R. J., and Dordick, J. S. (2009). Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and Bioengineering, 102(5), 1368–1376.
Li, C., Huang, C., Zhao, Y., Zheng, C., Su, H., Zhang, L., Luo, W., Zhao, H., Wang, S., and Huang, L. J. (2021). Effect of choline-based deep eutectic solvent pretreatment on the structure of cellulose and lignin in Bagasse. Processes, 9(2), 1–14.
Liao, J. J., Abd Latif, N. H., Trache, D., Brosse, N., and Hussin, M. H. (2020). Current advancement on the isolation, characterization and application of lignin. International Journal of Biological Macromolecules, 162, 985-1024.
Liu, C., Li, Y., and Hou, Y. (2019). Behavior of oxygen-containing groups in grass lignin during dissolution in basic ionic liquids. Cellulose, 26(2), 737–749.
Liu, Y.-J., Li, B., Feng, Y., and Cui, Q. (2020). Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world. Biotechnology Advances, 40, 107535.
Loow, Y. L., Wu, T. Y., Tan, K. A., Lim, Y. S., Siow, L. F., Md. Jahim, J., and Teoh, W. H. (2015). Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. Journal of Agricultural and Food Chemistry, 63(38), 8349-8363.
Lu, Y., Lu, Y. C., Hu, H. Q., Xie, F. J., Wei, X. Y., and Fan, X. (2017). Structural characterization of lignin and its degradation products with spectroscopic methods. Journal of Spectroscopy, 2017, 1-15.
Machineni, L. (2020). Lignocellulosic biofuel production: Review of alternatives. Biomass Conversion and Biorefinery, 10(3), 779–791.
Mahmood, H., Moniruzzaman, M., Iqbal, T., and Khan, M. J. (2019). Recent advances in the pretreatment of lignocellulosic biomass for biofuels and value-added products. Current Opinion in Green and Sustainable Chemistry, 20, 18–24.
Mankar, A. R., Pandey, A., Modak, A., and Pant, K. K. (2021). Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresource Technology, 334, 125235.
Maulidah, G. S., and Nandiyanto, A. B. D. (2021). A bibliometric analysis of nanocrystalline cellulose synthesis for packaging application research using vosviewer. International Journal of Research and Applied Technology (INJURATECH), 1(2), 106-110.
Md Salim, R., Asik, J., and Sarjadi, M. S. (2021). Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Science and Technology, 55(2), 295–313.
Mishra, R. K., Sabu, A., and Tiwari, S. K. (2018). Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 22(8), 949-978.
Nandiyanto, A. B. D., Oktiani, R., and Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97-118.
Nugraha, S. A., and Nandiyanto, A. B. D. (2022). Bibliometric analysis of magnetite nanoparticle production research during 2017-2021 using vosviewer. Indonesian Journal of Multidiciplinary Research, 2(2), 327-332
Oke, D., Dunn, J. B., and Hawkins, T. R. (2022). The contribution of biomass and waste resources to decarbonizing transportation and related energy and environmental effects. Sustainable Energy and Fuels, 6(3), 721–735.
Pramanik, S., Semenova, M. V., M. Rozhkova, A., Zorov, I. N., Korotkova, O., Sinitsyn, A. P., and Davari, M. D. (2021). An engineered cellobiohydrolase I for sustainable degradation of lignocellulosic biomass. Biotechnology and Bioengineering, 118(10), 4014–4027.
Qaim, M., Sibhatu, K. T., Siregar, H., and Grass, I. (2020). Environmental, economic, and social consequences of the oil palm boom. Annual Review of Resource Economics, 12, 321–344.
Ragadhita, R., and Nandiyanto, A. B. D. (2022). Computational bibliometric analysis on publication of techno-economic education. Indonesian Journal of Multidiciplinary Research, 2(1), 213-220
Rana, A. K., Frollini, E., and Thakur, V. K. (2021). Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization. International Journal of Biological Macromolecules, 182, 1554-1581.
Salama, A., and Hesemann, P. (2020). Recent trends in elaboration, processing, and derivatization of cellulosic materials using ionic liquids. ACS Sustainable Chemistry and Engineering, 8(49), 17893–17907.
Sayyed, A. J., Deshmukh, N. A., and Pinjari, D. V. (2019). A critical review of manufacturing processes used in regenerated cellulosic fibres: Viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose, 26(5), 2913–2940.
Shamsudin, S., Bahrin, E. K., Jenol, M. A., and Sharip, N. S. (2022). Characteristics and potential of renewable bioresources. Renewable Energy from Bio-resources in Malaysia, 10, 21-43.
Sheldon, R. A. (2016). Biocatalysis and biomass conversion in alternative reaction media. Chemistry–A European Journal, 22(37), 12984-12999.
Tan, H. T., and Lee, K. T. (2012). Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chemical Engineering Journal, 183, 448-458.
Teow, Y. H., Amirudin, S. N., and Ho, K. C. (2020). Sustainable approach to the synthesis of cellulose membrane from oil palm empty fruit bunch for dye wastewater treatment. Journal of Water Process Engineering, 34, 101182.
Torres, L. A. Z., Woiciechowski, A. L., de Andrade Tanobe, V. O., Karp, S. G., Lorenci, L. C. G., Faulds, C., and Soccol, C. R. (2020). Lignin as a potential source of high-added value compounds: A review. Journal of Cleaner Production, 263, 121499.
Tu, W. C., Weigand, L., Hummel, M., Sixta, H., Brandt-Talbot, A., and Hallett, J. P. (2020). Characterisation of cellulose pulps isolated from Miscanthus using a low-cost acidic ionic liquid. Cellulose, 27(8), 4745–4761.
Vârban, R., Crișan, I., Vârban, D., Ona, A., Olar, L., Stoie, A., and Ștefan, R. (2021). Comparative FT-IR prospecting for cellulose in stems of some fiber plants: Flax, velvet leaf, hemp and jute. Applied Sciences, 11(18), 8570.
Wells, J. M., Drielak, E., Surendra, K. C., and Kumar Khanal, S. (2020). Hot water pretreatment of lignocellulosic biomass: Modeling the effects of temperature, enzyme and biomass loadings on sugar yield. Bioresource Technology, 300, 122593.
Xia, Y., Li, J., Zhang, Z., Luo, S., Liu, S., Ma, C., and Li, W. (2020). Decoding biomass recalcitrance: Dispersion of ionic liquid in aqueous solution and efficient extraction of lignans with microwave magnetic field. PLoS ONE, 15(2), 1–16.
Xie, H., Du, H., Yang, X., and Si, C. (2018). Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. International Journal of Polymer Science, 2018, 1-35.
Yiin, C. L., Yap, K. L., Ku, A. Z. E., Chin, B. L. F., Lock, S. S. M., Cheah, K. W., Loy, A. C. M., and Chan, Y. H. (2021). Recent advances in green solvents for lignocellulosic biomass pretreatment: Potential of choline chloride (ChCl) based solvents. Bioresource Technology, 333, 125195.
Yolanda, Y. D., and Nandiyanto, A. B. D. (2022). How to read and calculate diameter size from electron microscopy images. ASEAN Journal of Science and Engineering Education, 2(1), 11-36.
Yoo, H.-M., Park, S.-W., Seo, Y.-C., and Kim, K.-H. (2019). Applicability assessment of empty fruit bunches from palm oil mills for use as bio-solid refuse fuels. Journal of Environmental Management, 234, 1–7.
Yuan, X., Chen, X., Shen, G., Chen, S., Yu, J., Zhai, R., Xu, Z., and Jin, M. (2022). Densifying lignocellulosic biomass with sulfuric acid provides a durable feedstock with high digestibility and high fermentability for cellulosic ethanol production. Renewable Energy, 182, 377–389.
Yunpu, W., Leilei, D., Liangliang, F., Shaoqi, S., Yuhuan, L., and Roger, R. (2016). Review of microwave-assisted lignin conversion for renewable fuels and chemicals. Journal of Analytical and Applied Pyrolysis, 119, 104-113.
Zhao, C., Shao, Q., and Chundawat, S. P. S. (2020). Recent advances on ammonia-based pretreatments of lignocellulosic biomass. Bioresource Technology, 298, 122446.
Zhou, Z., Liu, D., and Zhao, X. (2021). Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renewable and Sustainable Energy Reviews, 146, 111169.
DOI: https://doi.org/10.17509/ijost.v7i2.50800
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Universitas Pendidikan Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Science and Technology is published by UPI.
View My Stats