Limitation in Fabricating PSf/ZIF-8 Hollow Fiber Membrane for CO2/CH4 Separation
Abstract
Hollow fiber membrane configuration is way forward in membrane development since it possesses higher packing density and effective surface area per unit module compared to other configuration. Since majority of mixed matrix membrane (MMM) for gas separation reported focuses on flat sheet membrane development, this report aims to address the challenges faced in fabricating hollow fiber MMM. In this study, hollow fiber formulation is fabricated and their MMM using different types of fillers (virgin and modified ZIF-8) are prepared and used as a dispersed phase. The neat hollow fiber membrane shows good results with CO2 permeance of 104.39 GPU and CO2/CH4 selectivity of 29.28, in comparison with reported literature. Upon filler incorporation, the resulted MMMs appear to be diminished in both CO2 permeance and CO2/CH4 selectivity. While using modified ZIF-8, lesser deterioration was shown compared to pure ZIF-8, this phenomenon is likely to occur due to the changes in solution stability which causes notable changes in membrane morphology and performances.
Keywords
Full Text:
PDFReferences
Bae, Y.-S., Farha, O. K., Hupp, J. T., & Snurr, R. Q. (2009). Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification. Journal of Materials Chemistry, 19(15), 2131. doi:10.1039/b900390h
Baker, R. W. (2012). Gas Separation Membrane Technology and Applications: Wiley.
Baker, R. W., & Low, B. T. (2014). Gas Separation Membrane Materials: A Perspective. Macromolecules, 47(20), 6999-7013. doi:10.1021/ma501488s
Bhardwaj, V., Macintosh, A., Sharpe, I. D., Gordeyev, S. A., & Shilton, S. J. (2003). Polysulfone Hollow Fiber Gas Separation Membranes Filled with Submicron Particles. Annals of the New York Academy of Sciences, 984(1), 318-328. doi:10.1111/j.1749-6632.2003.tb06009.x
Gordeyev, S. A., Lees, G. B., Dunkin, I. R., & Shilton, S. J. (2001). Super-selective polysulfone hollow fiber membranes for gas separation: rheological assessment of the spinning solution. Polymer, 42(9), 4347-4352. doi:http://dx.doi.org/10.1016/S0032-3861(00)00787-4
Ismail, A. F., Dunkin, I. R., Gallivan, S. L., & Shilton, S. J. (1999). Production of super selective polysulfone hollow fiber membranes for gas separation. Polymer, 40(23), 6499-6506. doi:http://dx.doi.org/10.1016/S0032-3861(98)00862-3
Ismail, A. F., & Lai, P. Y. (2003). Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation. Separation and Purification Technology, 33(2), 127-143. doi:10.1016/s1383-5866(02)00201-0
Ismail, N. M., Ismail, A. F., Mustafa, A., Zulhairun, A. K., & Nordin, N. A. H. M. (2016). Enhanced carbon dioxide separation by polyethersulfone (PES) mixed matrix membranes deposited with clay Journal of Polymer Engineering (Vol. 36, pp. 65).
Jusoh, N., Yeong, Y. F., Lau, K. K., & M. Shariff, A. (2017). Enhanced gas separation performance using mixed matrix membranes containing zeolite T and 6FDA-durene polyimide. Journal of Membrane Science, 525, 175-186. doi:https://doi.org/10.1016/j.memsci.2016.10.044
Loeb, S. (1981). The Loeb-Sourirajan Membrane: How It Came About Synthetic Membranes: (Vol. 153, pp. 1-9): AMERICAN CHEMICAL SOCIETY.
Magueijo, V. M., Anderson, L. G., Fletcher, A. J., & Shilton, S. J. (2013). Polysulfone mixed matrix gas separation hollow fibre membranes filled with polymer and carbon xerogels. Chemical Engineering Science, 92, 13-20. doi:10.1016/j.ces.2013.01.043
Mahajan, R., & Koros, W. J. (2000). Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials. Industrial & Engineering Chemistry Research, 39(8), 2692-2696. doi:10.1021/ie990799r
Md Nordin, N. A. H., Ismail, A. F., Mustafa, A., Murali, R. S., & Matsuura, T. (2015). Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation. RSC Advances, 5(38), 30206-30215. doi:10.1039/c5ra00567a
Md Nordin, N. A. H., Racha, S. M., Matsuura, T., Misdan, N., Abdullah Sani, N. A., Ismail, A. F., & Mustafa, A. (2015). Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: synthesis and preparation. RSC Advances, 5(54), 43110-43120. doi:10.1039/c5ra02230d
Nordin, N. A. H. M., Ismail, A. F., Misdan, N., & Nazri, N. A. M. (2017). Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation. AIP Conference Proceedings, 1891(1), 020091. doi:10.1063/1.5005424
Nordin, N. A. H. M., Ismail, A. F., Mustafa, A., Goh, P. S., Rana, D., & Matsuura, T. (2014). Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine. RSC Advances, 4(63), 33292-33300. doi:10.1039/C4RA03593C
Nordin, N. A. H. M., Ismail, A. F., & Yahya, N. (2017). Zeolitic imidazole framework 8 decorated graphene oxide (ZIF-8/GO) mixed matrix membrane (MMM) for CO2/CH4 separation. Jurnal Teknologi, 79(1-2), 59-63. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011632571&partnerID=40&md5=abc2b199d85079c7451c88a02db7afdb
Ordoñez, M. J. C., Balkus, K. J., Ferraris, J. P., & Musselman, I. H. (2010). Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 361(1), 28-37. doi:https://doi.org/10.1016/j.memsci.2010.06.017
Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., . . . Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A, 103(27), 10186-10191. doi:10.1073/pnas.0602439103
Perez, E. V., Balkus, K. J., Ferraris, J. P., & Musselman, I. H. (2009). Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 328(1-2), 165-173. doi:10.1016/j.memsci.2008.12.006
Pourafshari Chenar, M., Rajabi, H., Pakizeh, M., Sadeghi, M., & Bolverdi, A. (2013). Effect of solvent type on the morphology and gas permeation properties of polysulfone–silica nanocomposite membranes. Journal of Polymer Research, 20(8), 1-9. doi:10.1007/s10965-013-0216-3
Rafizah, W. A. W., & Ismail, A. F. (2008). Effect of carbon molecular sieve sizing with poly(vinyl pyrrolidone) K-15 on carbon molecular sieve–polysulfone mixed matrix membrane. Journal of Membrane Science, 307(1), 53-61. doi:https://doi.org/10.1016/j.memsci.2007.09.007
Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027
Schröder, F., Esken, D., Cokoja, M., van den Berg, M. W. E., Lebedev, O. I., Van Tendeloo, G., . . . Fischer, R. A. (2008). Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3] by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-Stabilized Ruthenium Colloids. J Am Chem Soc, 130(19), 6119-6130. doi:10.1021/ja078231u
Surya Murali, R., Praveen Kumar, K., Ismail, A. F., & Sridhar, S. (2014). Nanosilica and H-Mordenite incorporated Poly(ether-block-amide)-1657 membranes for gaseous separations. Microporous and Mesoporous Materials, 197, 291-298. doi:https://doi.org/10.1016/j.micromeso.2014.07.001
Wahab, M. F. A., Ismail, A. F., & Shilton, S. J. (2012). Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers. Separation and Purification Technology, 86, 41-48. doi:10.1016/j.seppur.2011.10.018
Zhang, Z., Xian, S., Xi, H., Wang, H., & Li, Z. (2011). Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface. Chemical Engineering Science, 66(20), 4878-4888. doi:10.1016/j.ces.2011.06.051
Zimmerman, C. M., Singh, A., & Koros, W. J. (1997). Tailoring mixed matrix composite membranes for gas separations. Journal of Membrane Science, 137(1), 145-154. doi:https://doi.org/10.1016/S0376-7388(97)00194-4.
DOI: https://doi.org/10.17509/ijost.v3i2.12757
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Indonesian Journal of Science and Technology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Science and Technology is published by UPI.
View My Stats