METODE DEFUZZIFIKASI ARTIFICIAL NEURAL NETWORK UNTUK KLASIFIKASI PENGGUNAAN LAHAN
Abstract
Artificial neural network is a non-parametric approach which does not require class statistical distribution to be described normally, the advantages of non-parametric approach are its ability to combine septral data and non-spectral data, which is assumed by adding non-spectral data, the resulting accuracy also increased. The method used in this study is a fuzzy logic-based approach with defuzzification using an artificial neural network algorithm. The input spectral data were taken from the ALOS AVNIR-2 image and non-spectral data in the form of slope, soil solum and image texture. This study resulted in an overall accuracy and kappa index that was not good or proper, however the results were still acceptable. The results of the overall accuracy calculation for the 14 land use classes of the artificial neural network defuzzification process involving spectral data only (4 bands ALOS AVNIR-2) were 55% and the kappa index was 0.51. Meanwhile, when non-spectral data such as slope slope, soil solution and image texture are involved as input, the accuracy decreases in 14 land use classes, with an overall accuracy of 40% and a kappa index of 0.35 where the input slope and soil solum are interpolated in the software. ArcGIS first, while the one that was directly interpolated in the Idrisi Selva software, the overall accuracy was 49.75% and the kappa index was 0.45%.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Danoedoro, P., 2012, Pengantar Penginderaan Jauh Digital, Penerbit Andi, Yogyakarta.
Denaswidhi, E., 2008, Pendekatan Logika Samar (Fuzzy Logic) untuk Pemetaan Penggunaan Lahan Sebagian Kota Semarang dari Citra Landsat ETM+ Multitemporal, Skripsi, Fakultas Geografi Universitas Gadjah Mada Yogyakarta.
Direktorat Pemetaan Tematik, 2012, Norma, Standar, Prosedur dan Kriteria, Deputi Bidang Survei, Pengukuran dan Pemetaan, BPN RI.
Hardjowigeno, S., dan Widiatmaka, 2007, Evaluasi Kesesuaian Lahan dan Perencanaan Tataguna Lahan, Gadjah Mada University Press, Yogyakarta.
Jensen, J.R., 2005, Introductory Digital Image Processing : A Remote Sensing Perspective, Third Edition, Pearson Education, Inc., United States of America.
Kristanto, A., 2004, Jaringan Syaraf Tiruan: Konsep Dasar, Algoritma dan Aplikasi, Penerbit Gava Media, Yogyakarta.
Kurniawan, W., 2012, Studi Kemampuan Fuzzy Neural Network Dalam Klasifikasi Perpiksel Penutup Lahan Menggunakan Citra Landsat 7 Etm+, Skripsi, Fakultas Geografi, Universitas Gadjah Mada Yogyakarta.
Kusumadewi, S., 2004, Membangun Jaringan Syaraf Tiruan Menggunakan MATLAB dan EXCEL LINK, Penerbit Graha Ilmu, Yogyakarta.
Novamizanti et.al., 2010, Optimasi Logika Fuzzy Menggunakan Algoritma Genetika Pada Identifikasi Pola Tanda Tangan, Jurnal, Konferensi Nasional Sistem dan Informatika Bali, hlm : 153.
Samudra, I., 2007, Kajian Kemampuan Metode Jaringan Syaraf Tiruan untuk Klasifikasi Penutup Lahan dengan Menggunakan Citra ASTER, Tesis, Program Pasca Sarjana Fakultas Geografi Universitas Gadjah Mada Yogyakarta.
Sutanto, 2013, Metode Penelitian Penginderaan Jauh, Penerbit Ombak, Yogyakarta.
Wahyudi, D., 2013, Kajian Jaringan Syaraf Tiruan Berbasis Citra ASTER VNIR dan SWIR untuk Klasifikasi Penutup dan Penggunaan Lahan di Kecamatan Katingan Tengah, Kabupaten Katingan, Provinsi Kalimantan Tengah, Tesis, Program Pasca Sarjana Fakultas Geografi Universitas Gadjah Mada Yogyakarta.
Schowengerdt, R.A., 1983, Techniques for Image Processing and Classification in Remote Sensing, Academic Press, London.
Tutorial Idrisi Selva, 2012, Help, Idrisi Selva.
DOI: https://doi.org/10.17509/gea.v20i2.28163
DOI (PDF (Bahasa Indonesia)): https://doi.org/10.17509/gea.v20i2.28163.g13223
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Harvini Wulansari
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.