Library Book Loan Data Clustering Using K-Means Algorithm to Improve Book Loans
Abstract
Entering the post-pandemic new standard era in 2022 as of June, the number of borrowed books at the Indonesian University of Education Library could be more optimal compared to the year before the pandemic (2018 - 2019). Lending in 2022 can still be increased by arranging the most borrowed books in one group. This research aims to classify books more optimally, which will be applied to book arrangement. Optimal book arrangement allows library visitors to find books more efficiently based on the books that are most often borrowed so that they are interested in borrowing other books in a group. Data mining is a term used to describe knowledge in a database from a repository by finding patterns and trends in data through examination with statistical and mathematical techniques. Clustering is a data mining method that can be used to determine the data clusters. One of the algorithms that can be used is K-Means. The clustering pattern obtained shows 2 (two) grouping clusters. Book titles in cluster 0 contain book titles related to research methodology, statistics, measurement scales, assessment, and learning evaluation. While cluster 1 tends to contain psychology, counseling, religion, philosophy, management, economics, and history. This data can be used by librarians in prioritizing purchasing a collection of books in the subsequent procurement.
Keywords
Full Text:
PDFReferences
Adhitama, R., Burhanuddin, A., & Ananda, R. (2020). PENENTUAN JUMLAH CLUSTER IDEAL SMK DI JAWA TENGAH DENGAN METODE X-MEANS CLUSTERING DAN K-MEANS CLUSTERING DETERMINING VOCATIONAL IDEAL CLUSTER NUMBER IN CENTRAL JAVA WITH X-MEANS CLUSTERING AND K-MEANS CLUSTERING METHODS. Jurnal Informatika Dan Komputer) Akreditasi KEMENRISTEKDIKTI, 3(1). https://doi.org/10.33387/jiko
Fatmawati, K., & Windarto, A. P. (2018). DATA MINING: PENERAPAN RAPIDMINER DENGAN K-MEANS CLUSTER PADA DAERAH TERJANGKIT DEMAM BERDARAH DENGUE (DBD) BERDASARKAN PROVINSI. CESS (Journal of Computer Engineering System and Science), 3(2), 173–178. https://www.depkes.go.id/.
Febrianto, A., Achmadi, S., & Sasmito, A. P. (2021). PENERAPAN METODE K-MEANS UNTUK CLUSTERING PENGUNJUNG PERPUSTAKAAN ITN MALANG. Dalam Jurnal Mahasiswa Teknik Informatika) (Vol. 5, Issue 1).
Firdaus, E. A., Maulani, S., & Dharmawan, A. B. (2021). PENGUKURAN MINAT BACA MAHASISWA DENGAN METODE CLUSTERING DI PERPUSTAKAAN AKADEMI KEPERAWATAN RS. DUSTIRA CIMAHI MENGGUNAKAN DATA MINING. JURNAL NUANSA INFORMATIKA, 15(1). https://journal.uniku.ac.id/index.php/ilkom
Heri Cahyana, N., & Sasmito Aribowo, A. (2018). Metode Data Mining K-Means Untuk Klasterisasi Data Penanganan Dan Pelayanan Kesehatan Masyarakat. Seminar Nasional Informatika Medis (Snimed) 2018, 24–31.
Karputri, D. L., & Yustanti, W. (2022). Analisis Klastering Buku sebagai Evaluasi untuk Peningkatan Minat Baca Perpusatakaan SMAN 1 Grogol. Journal of Emerging Information Systems and Business Intelligence, 3(3).
Mahmuda, F., Armys Roma Sitorus, M., Widyastuti, H., & Ely Kurniawan, D. (2017). Clustering Profil Pengunjung Perpustakaan (Studi Kasus Perpustakaan BP Batam). Dalam Journal of Applied Informatics and Computing (JAIC) (Vol. 1, Issue 1). http://jurnal.polibatam.ac.id/index.php/JAIC
Nasir, J. (2020). Penerapan Data Mining Clustering Dalam Mengelompokan Buku Dengan Metode K-Means. Jurnal SIMETRIS, 11(2).
Nurfadillah, M., & Ardiansah, A. (2021). PERILAKU PENCARIAN INFORMASI MAHASISWA DALAM MEMENUHI KEBUTUHAN INFORMASI SEBELUM DAN SAAT PANDEMI COVID-19. Fihris: Jurnal Ilmu Perpustakaan Dan Informasi, 16(1), 21. https://doi.org/10.14421/fhrs.2021.162.21-39
Sibuea, F. L., & Sapta, A. (2017). PEMETAAN SISWA BERPRESTASI MENGGUNAKAN METODE K-MEANS CLUSTERING. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), IV(1), 85–92.
Silitonga, P. D. P., & Morina, I. S. (2017). Klusterisasi Pola Penyebaran Penyakit Pasien Berdasarkan Usia Pasien Dengan Menggunakan K-Means Clustering. Jurnal TIMES, VI(2), 22–25.
Siregar, M. H. (2018). KLASTERISASI PENJUALAN ALAT-ALAT BANGUNAN MENGGUNAKAN METODE K-MEANS (STUDI KASUS DI TOKO ADI BANGUNAN). JURNAL TEKNOLOGI DAN OPEN SOURCE, 1(2), 83–91.
Sudarsono, B. G., & Lestari, S. P. (2021). Clustering Penerima Beasiswa Yayasan Untuk Mahasiswa Menggunakan Metode K-Means. JURNAL MEDIA INFORMATIKA BUDIDARMA, 5(1), 258. https://doi.org/10.30865/mib.v5i1.2670
Yunita, F. (2018). PENERAPAN DATA MINING MENGGUNKAN ALGORITMA K-MEANS CLUSTRING PADA PENERIMAAN MAHASISWA BARU (STUDI KASUS : UNIVERSITAS ISLAM INDRAGIRI). Jurnal SISTEMASI, 7(3), 238–249.
DOI: https://doi.org/10.17509/edulib.v13i1.50003
DOI (PDF): https://doi.org/10.17509/edulib.v13i2.50003.g28326
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Edulib
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.