Cluster Analysis Of Emotions In Quranic Translations Using K-Means Clustering

Muhammad Faisal Fiqri, Raditya Muhammad, Mochamad Iqbal Ardimansyah

Abstract


Al-Qur’an as the word of Allah is a comprehensive source of knowledge, covering spiritual, moral, social, and psychological aspects, including instructions on the recognition of emotions that have a significant impact on a person's emotional intelligence. This research aims to identify and categorize verses in Indonesian translation of the Quran that contain basic emotions such as anger, disgust, fear, happiness, sadness, and surprise. The process involves data preprocessing, verse search using Vector Space Model, and application of K-Means Clustering algorithm. As a result, the verses can be grouped into four main clusters. The characteristics of the clusters formed include, cluster 0 shows the grouping of verses containing the word “happy”, clusters 1 and 2 respectively show the word “fear”, and cluster 3 shows the word “sad”. The cluster evaluation results obtained using Silhouette Score is 0.442 and Calinski-Harabasz Index is 251.653, which indicates that there is a sign of cluster but there is still some overlap between clusters. In conclusion, this clustering makes an important contribution to the understanding of Quranic interpretation and opens up opportunities for further development in academic studies and religious learning.

Keywords


K-Means Clustering; Basic Emotion; Al-Qur’an Transtation; Text Mining

References


I. Idaman dan S. Hidayat, “AL-QUR’AN DAN KECERDASAN SPIRITUAL: UPAYA MENYINGKAP RAHASIA ALLAH DALAM AL-QUR’AN,” Khatulistiwa, vol. 1, no. 1, Mar 2011, doi: 10.24260/khatulistiwa.v1i1.181.

A. Mustofa, “Pemikiran Harun Yahya Dalam Nilai Nilai Moral Al-Qur’an ( Studi Analisis Nilai Nilai Pendidikan Akhlaq),” J. Pendidik. Islam, vol. 4, no. 1, Art. no. 1, 2018, doi: 10.37286/ojs.v4i1.29.

S. Suparlan, “PSIKOLOGI DAN KEPRIBADIAN PERSPEKTIF AL-QURAN,” Humanika Kaji. Ilm. Mata Kuliah Umum, vol. 8, no. 1, Art. no. 1, 2008, doi: 10.21831/hum.v8i1.21005.

A. Nurrohim dan I. N. Sidik, “ḤIKMAH DALAM AL-QUR’AN: STUDI TEMATIK TERHADAP TAFSIR AL-MIZĀN,” Profetika J. Studi Islam, vol. 20, no. 2, Art. no. 2, Jan 2020, doi: https://doi.org/10.23917/profetika.v20i2.9954.

R. E. Martin dan K. N. Ochsner, “The Neuroscience of Emotion Regulation Development: Implications for Education,” Curr. Opin. Behav. Sci., vol. 10, hlm. 142–148, Agu 2016, doi: 10.1016/j.cobeha.2016.06.006.

I. L. Anggraeni dan Y. A. Rozali, “QUARTER LIFE CRISIS DITINJAU DARI KECERDASAN EMOSIONAL PADA DEWASA AWAL,” Psychommunity Semin. Nas. Psikol. Esa Unggul, no. 0, Art. no. 0, 2023, Diakses: 28 Juli 2024. [Daring]. Tersedia pada: https://prosiding.esaunggul.ac.id/index.php/SEMNASPSIKOLOGI/article/view/306

“How to Improve Your Emotional Intelligence,” Professional & Executive Development | Harvard DCE. Diakses: 28 Juli 2024. [Daring]. Tersedia pada: https://professional.dce.harvard.edu/blog/how-to-improve-your-emotional-intelligence/

D. I. A. Putra dan M. Hidayaturrahman, “The roles of technology in al-Quran exegesis in Indonesia,” Technol. Soc., vol. 63, hlm. 101418, Nov 2020, doi: 10.1016/j.techsoc.2020.101418.

Y. E. Saida, “Pengelompokan terjemahan ayat-ayat Al-Qur’an dalam Bahasa Indonesia dengan Algoritma K-Means Clustering,” Sarjana, Universitas Brawijaya, 2007. Diakses: 30 Juli 2024. [Daring]. Tersedia pada: https://repository.ub.ac.id/id/eprint/151725/

P. Ekman, “An argument for basic emotions,” Cogn. Emot., vol. 6, no. 3–4, hlm. 169–200, Mei 1992, doi: 10.1080/02699939208411068.

M. Mardan, Al-Qur’an Sebuah Pengantar. Jakarta: Pustaka Mapan Jakarta, 2010. Diakses: 11 Februari 2024. [Daring]. Tersedia pada: https://repositori.uin-alauddin.ac.id/1661/

M. Zahid, “PERBEDAAN PENDAPAT PARA ULAMA TENTANG JUMLAH AYAT AL-QUR’AN DAN IMPLIKASINYA TERHADAP PENERBITAN MUSHAF AL-QUR’AN DI INDONESIA,” NUANSA J. Penelit. Ilmu Sos. Dan Keagamaan Islam, vol. 9, no. 1, Art. no. 1, Jan 2012, doi: 10.19105/nuansa.v9i1.20.

H. Z. bin H. Thaib, “Tadarus Alquran: Urgensi, Tahapan, dan Penerapannya,” Almufida J. Ilmu-Ilmu Keislam., vol. 1, no. 1, Art. no. 1, 2016, doi: 10.46576/almufida.v1i1.103.

R. Aritama, “Perkembangan Penerjemahan Al-Quran di Indonesia dari Masa ke Masa,” Tafsir Al Quran | Referensi Tafsir di Indonesia. Diakses: 24 Agustus 2024. [Daring]. Tersedia pada: https://tafsiralquran.id/perkembangan-penerjemahan-al-quran-di-indonesia-dari-masa-ke-masa/

M. Allahyari dkk., “A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques,” 28 Juli 2017, arXiv: arXiv:1707.02919. doi: 10.48550/arXiv.1707.02919.

H. Hassani, C. Beneki, S. Unger, M. T. Mazinani, dan M. R. Yeganegi, “Text Mining in Big Data Analytics,” Big Data Cogn. Comput., vol. 4, no. 1, Art. no. 1, Mar 2020, doi: 10.3390/bdcc4010001.

G. Miner, J. E. IV, T. Hill, R. Nisbet, D. Delen, dan A. Fast, Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications, 1st edition. Waltham, MA: Academic Press, 2012.

C.-Y. Chu, K. Park, dan G. E. Kremer, “Applying Text-mining Techniques to Global Supply Chain Region Selection: Considering Regional Differences,” Procedia Manuf., vol. 39, hlm. 1691–1698, Jan 2019, doi: 10.1016/j.promfg.2020.01.271.

S. SAKTHI VEL, “Pre-Processing techniques of Text Mining using Computational Linguistics and Python Libraries,” dalam 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Mar 2021, hlm. 879–884. doi: 10.1109/ICAIS50930.2021.9395924.

S. Kurniawan, W. Gata, D. A. Puspitawati, I. K. S. Parthama, H. Setiawan, dan S. Hartini, “Text Mining Pre-Processing Using Gata Framework and RapidMiner for Indonesian Sentiment Analysis,” IOP Conf. Ser. Mater. Sci. Eng., vol. 835, no. 1, hlm. 012057, Apr 2020, doi: 10.1088/1757-899X/835/1/012057.

Hendriyana, A. F. Huda, dan Z. A. Baizal, “Feature Extraction Amazon Customer Review to Determine Topic on Smartphone Domain,” dalam 2021 13th International Conference on Information & Communication Technology and System (ICTS), 2021, hlm. 342–347. doi: 10.1109/ICTS52701.2021.9608015.

J. Cao, J. Fang, Z. Meng, dan S. Liang, “Knowledge Graph Embedding: A Survey from the Perspective of Representation Spaces,” 15 Oktober 2023, arXiv: arXiv:2211.03536. doi: 10.48550/arXiv.2211.03536.

H. Liang, X. Sun, Y. Sun, dan Y. Gao, “Text feature extraction based on deep learning: a review,” EURASIP J. Wirel. Commun. Netw., vol. 2017, no. 1, hlm. 211, Des 2017, doi: 10.1186/s13638-017-0993-1.

M. E. Celebi, H. A. Kingravi, dan P. A. Vela, “A comparative study of efficient initialization methods for the k-means clustering algorithm,” Expert Syst. Appl., vol. 40, no. 1, hlm. 200–210, Jan 2013, doi: 10.1016/j.eswa.2012.07.021.

D. T. Pham, S. S. Dimov, dan C. D. Nguyen, “Selection of K in K-means clustering,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 219, no. 1, hlm. 103–119, Jan 2005, doi: 10.1243/095440605X8298.

H. M. Liu dan J. G. Lu, “Brief Survey of K-Means Clustering Algorithms,” Appl. Mech. Mater., vol. 740, hlm. 624–628, 2015, doi: 10.4028/www.scientific.net/AMM.740.624.

L. Kaufman dan P. Rousseeuw, Finding Groups in Data: An Introduction To Cluster Analysis. 1990. doi: 10.2307/2532178.




DOI: https://doi.org/10.17509/seict.v5i2.75942

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Journal of Software Engineering, Information and Communication Technology (SEICT)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Software Engineering, Information and Communicaton Technology (SEICT), 
(e-ISSN:
2774-1699 | p-ISSN:2744-1656) published by Program Studi Rekayasa Perangkat Lunak, Kampus UPI di Cibiru.


 Indexed by.