Determination of Mango Fruit Maturity on the Tree Based on Digital Image Processing and Artificial Neural Networks

Aditia Sanjaya, Ichwanul Muslim Karo Karo

Abstract


Until now, humans have determined the ripeness of mangoes on the tree by hand. Losses are caused by the insecurity of the human state and a misunderstanding of the maturity level of mangoes. In the future, a system that can detect the ripeness of mangoes on the tree will be required. This research provides a preliminary examination of the technology's implementation. The study created a computerized image processing method for determining the ripeness of mangoes on the tree. The neural network backpropagation algorithm was employed in this investigation. The feature extraction model employed in the image is a hybrid of the RBG and HSV models. The best accuracy level is 72%, with an 80:20 ratio of test data to training data. 


Keywords


Backpropagation; HSV; Mango; RGB

Full Text:

PDF

References


Adenugraha, S. P., Arinal, V., and Mulyana, D. I. (2022). Klasifikasi kematangan buah pisang ambon menggunakan metode KNN dan PCA berdasarkan citra RGB dan HSV. Jurnal Media Informatika Budidarma, 6(1), 9-17.

Alcaruhban, R., Sugiantoro, B., and Prayudi, Y. (2018). Analisis pendeteksi kecocokan objek pada citra digital dengan metode algoritma sift dan histogram color RGB. Cyber Security dan Forensik Digital, 1(1), 20-27.

Chen, T., and Zhong, S. (2009). Privacy-preserving backpropagation neural network learning. IEEE Transactions on Neural Networks, 20(10), 1554-1564.

Himmah, E. F., Widyaningsih, M., and Maysaroh, M. (2020). Identifikasi Kematangan Buah Kelapa Sawit Berdasarkan Warna RGB Dan HSV Menggunakan Metode K-Means Clustering. Jurnal Sains Dan Informatika, 6(2), 193-202.

Hossain, M. A., Rana, M. M., Uddin, M. S., and Kimura, Y. (2021). Changes in organoleptic and biochemical characteristics of mango fruits treated with calcium chloride in hot water. Journal of Horticulture and Postharvest Research, 4(1), 37-50.

Javanmardi, S., Ashtiani, S. H. M., Verbeek, F. J., and Martynenko, A. (2021). Computer-vision classification of corn seed varieties using deep convolutional neural networks. Journal of Stored Products Research, 92, 41-55.

Karo, I. M. K., Fudzee, M. F. M., Kasim, S., and Ramli, A. A. (2022). Karonese sentiment analysis: a new dataset and preliminary result. JOIV: International Journal on Informatics Visualization, 6(2-2), 523-530.

Kurniawan, S. D., and Junaidi, T. (2022). Implementasi algoritma k-nearest neighbor dengan metode hue saturation value untuk pendeteksi kematangan buah jambu. Smart Comp: Jurnalnya Orang Pintar Komputer, 11(3), 541-547.

Laia, F. H., Rosnelly, R., Buulolo, K., Lase, M. C., and Naswar, A. (2023). Klasifikasi kematangan buah mangga madani berdasarkan bentuk dengan jaringan syaraf tiruan metode perceptron. Device, 13(1), 14-20.

Latuconsina, R. (2021). Kualitas minyak transformator ditentukan dengan pengolahan citra digital pada nilai RGB (red, green, dan blue). Jurnal Elektrikal dan Komputer, 2(1), 71-78.

Nurraharjo, E. (2012). Implementasi image statistic method pada pengolahan citra digital. Dinamik, 17(1), 1-5.

Paola, J. D., and Schowengerdt, R. A. (1995). A review and analysis of backpropagation neural networks for classification of remotely-sensed multispectral imagery. International Journal of Remote Sensing, 16(16), 3033-3058.

Salsabila, A., Yunita, R., and Rozikin, C. (2021). Identifikasi citra jenis bunga menggunakan algoritma KNN dengan ekstraksi warna HSV dan tekstur GLCM. Technomedia Journal, 6(1), 124-137.

Sanjaya, C. B., and Rosadi, M. I. (2018). Klasifikasi buah mangga berdasarkan tingkat kematangan menggunakan least-squares support vector machine. Explore IT, 10(2), 1-13.

Sari, J. Y., and Purnama, I. P. N. (2018). Identifikasi tingkat kematangan buah pisang menggunakan metode ektraksi ciri statistik pada warna kulit buah. Ultimatics: Jurnal Teknik Informatika, 10(2), 98-102.

Shi, F., Wang, J., Shi, J., Wu, Z., Wang, Q., Tang, Z., ... and Shen, D. (2020). Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE reviews in biomedical engineering, 14, 4-15.

Sutisna, S. P., Waluyo, R., Aldiansyah, F., and Rahmat, M. (2020). Aplikasi pengolahan citra untuk proses sortasi buah mangga berdasarkan dimensi dan bobot. Jurnal Ilmiah Rekayasa Pertanian dan Biosistem, 8(1), 12-19.

Syarifah, A., Riadi, A. A., and Susanto, A. (2022). Klasifikasi tingkat kematangan jambu bol berbasis pengolahan citra digital menggunakan metode k-nearest neighbor. JIMP (Jurnal Informatika Merdeka Pasuruan), 7(1), 27-35.

Zhang, D., and Lu, G. (2004). Review of shape representation and description techniques. Pattern recognition, 37(1), 1-19.

Zeb, J., Javed, M. Y., and Qayyum, U. (2007). Low resolution single neural network based face recognition. International Journal of Computer and Information Engineering, 1(4), 905-909.




DOI: https://doi.org/10.17509/seict.v4i1.52916

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Software Engineering, Information and Communication Technology (SEICT)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Software Engineering, Information and Communicaton Technology (SEICT), 
(e-ISSN:
2774-1699 | p-ISSN:2744-1656) published by Program Studi Rekayasa Perangkat Lunak, Kampus UPI di Cibiru.


 Indexed by.