Smart Home Electric Energy Management Using Non-Intrusive Appliance Load Monitoring (NILM)
Abstract
Keywords
Full Text:
PDFReferences
Zoha, A., Gluhak, A., Imran, M. A., & Rajasegarar, S. (2012). Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey. Sensors, 12(12), 16838-16866.Berges, M.; Goldman, E.;
Matthews, H.S.; Soibelman, L.; and Anderson, K. (2011) User-centered non-intrusive electricity load monitoring for residential buildings. j. comput. Civil Eng, 25, 471–480.
Carrie Armel, K.; Gupta, A.; Shrimali, G.; Albert, A. (2013). Is disaggregation the holy grail of energy efficiency? the case of electricity. Energ. Policy 52, 213–234.
Egarter, D., & Elmenreich, W. (2015, March). Autonomous load disaggregation approach based on active power measurements. In 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops) (pp. 293-298). IEEE.
Ehrhardt-Martinez, K.; Donnelly, K.A.; and Laitner (2010)., J.A.Advanced metering initiatives and residential feedback programs: a meta-review for household electricity-saving opportunities; Technical Report E105 for American Council for an Energy-Efficient Economy (ACEE): Washington, DC, USA.
Hart, G. W. (1992). Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80(12), 1870-1891.Guizien Martin (2021). Desagregación del consumo eléctrico e identificación de dispositivos en hogares en el contexto de monitorización no intrusiva (NILM) utilizando Deep Learning. repositorio.comillas.edu
J Ranjan. Object user recognition in multi-person homes (2015). UbiComp/ISWC'15 Adjunct: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers
J Raya & J CerdaA (2014). Low frequency power-based event alignment method for trained NILM systems. IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) DOI: 10.1109/ROPEC34556.2014
L Ma, P Schegner (2019). State duration-based event detection for domestic power disaggregation. IEEE Milan PowerTech
Ghosh, S., Chatterjee, A., & Chatterjee, D. (2021). An improved load feature extraction technique for smart Homes using fuzzy-based NILM. IEEE Transactions on Instrumentation and Measurement, 70, 1-9.
Jürgel, M., & Mass, J. (2019). Non-Intrusive Load Monitoring in the OpenHAB smart home framework. A bachelor’s thesis of University of Tartu.Youssef, T. (2017). Co-design of Security Aware Power System Distribution Architecture as Cyber Physical System.
Iqbal, J., Khan, M., Talha, M., Farman, H., Jan, B., Muhammad, A., & Khattak, H. A. (2018). A generic internet of things architecture for controlling electrical energy consumption in smart homes. Sustainable cities and society, 43, 443-450. 1-39
Del Mar, P. (2013). Motor load detection for voltage transient based non-intrusive load monitoring. Doctoral dissertation, University of Delaware.
Khanchuea, K., & Siripokarpirom, R. (2019, March). A multi-protocol IoT gateway and WiFi/BLE sensor nodes for smart home and building automation: Design and implementation. In 2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES) (pp. 1-6). IEEE.
Mauceli, E., Geng, Z. K., Hamilton, W. O., Johnson, W. W., Merkowitz, S., Morse, A., ... & Solomonson, N. (1996). The Allegro gravitational wave detector: Data acquisition and analysis. Physical Review D, 54(2), 1264.
DOI: https://doi.org/10.17509/seict.v2i1.34572
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Journal of Software Engineering, Information and Communication Technology (SEICT)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Software Engineering, Information and Communicaton Technology (SEICT),
(e-ISSN:2774-1699 | p-ISSN:2744-1656) published by Program Studi Rekayasa Perangkat Lunak, Kampus UPI di Cibiru.
Indexed by.