Face Recognition Based Attendance System Using Haar Cascade Algorithm with Histogram Equalization and Median Blur Filter

Rin Rin Nurmalasari, Rizky Nurhadhi, Rizky Mahesa Ramadhan, Shabrina Katresnawati, Zalfa Humaira Salsabila

Abstract


The attendance system is one of the mandatory activities in teaching and learning activities in an educational environment. Unfortunately, many still use a manual attendance system, which is inefficient, and fraud often occurs by manipulating attendance data. In this research, a face recognition-based attendance system was created. The face detection and recognition system use the haar cascade method with image preprocessing, namely histogram equalization and median blur filter. This system can provide output in the form of CSV documents containing attendance data that has been done in real time so that attendance data recording becomes more efficient than before. There is a significant difference in face recognition without and with image preprocessing. Without image preprocessing, the average face recognition accuracy rate is 71.2%. In face recognition with image preprocessing, the face recognition accuracy rate is 91.5%. Therefore, the use of image preprocessing can improve image quality and significantly increase the accuracy of face recognition. In addition, the CSV document is successfully generated automatically after the attendance process is carried out, which is equipped with user data, attendance date, and time when the user makes attendance to avoid fraud in the form of manipulation of attendance data by users.

Keywords


Face Recognition, Haar Casecade, Histogram Equalizatio, Median Blur Filter.

Full Text:

PDF

References


Andri Nugraha Ramdhon, F. F. (2021). Penerapan Face Recognition Pada Sistem Presensi. Journal Of Applied Computer Science And Technology (JACOST), 12-17.

Banu Santoso, R. P. (2020). Implementasi Penggunaan Opencv Pada Face Recognition Untuk Sistem Presensi Perkuliahan Mahasiswa. SISTEMASI, 9(2), 352–361.

Bo Tang, L. C.-k. (2022). Review of surface defect detection of steel products based on machine vision. IET IMAGE PROCESSING, 303–322 .

Burhanuddin Tryatmojo, R. I. (2019). Akurasi Sistem Face Recognition Opencv Menggunakan Raspberry Pi Dengan Metode Haar Cascade. Jurnal Ilmiah Informatika (JIF), 7(02), 92-98.

Fadhillah Azmi, A. S. (2023). Smart Management Attendance System with Facial Recognition Using Computer Vision Techniques on the Raspberry Pi. International Journal of Innovative Research in Computer Science & Technology (IJIRCST).

Moh Wahyu Septyanto, H. S. (2019). Aplikasi Presensi Pengenalan Wajah Dengan Menggunakan Algoritma Haar Cascade Classifier. Telematika, 16(2), 87-96, doi:10.31315/telematika.v16i2.3182.

Nithin K Shine, G. B. (2022). An approach for improving Optical Character Recognition using Contrast enhancement technique. 4th National Conference on Communication Systems (NCOCS 2022). IOP Publishing.

Peter Pangestu, D. G. (2017). Histogram Equalization Implementation in the Preprocessing Phase on Optical Character Recognition. International Journal of Technology (IJTech).

Rastri Prathivi, Y. K. (2020). Sistem Presensi Kelas Menggunakan Pengenalan Wajah Dengan Metode Haar Cascade Classifier. Simetris, 11(1), 135-142.

Sihotang, J. h. (2019). Improving the Quality of Digital Images Using the Median Filter Technique to Reduce Noise. JURNAL INFOKUM, 15-19.

Wang, R. T. (2017). Improved Adaptive Median Filter Algorithm for Removing Impulse Noise from Grayscale Images. International Journal of Engineering, 30(10), 1503-1509.

WIyono, B. (2010). Image Smoothing Menggunakan Mean Filtering, Median Filtering, Modus Filtering Dan Gaussian Filtering. Telematika.

Xue. (2009). A facial presence monitoring system for information security. Conference: Computational Intelligence in Biometrics: Theory, Algorithms, and Applications (pp. 69 - 76). IEEE.




DOI: https://doi.org/10.17509/edsence.v5i2.65907

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Pendidikan Multimedia (Edsence)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Pendidikan Multimedia (Edsence) ( p-ISSN:2685-2489 | e-ISSN:2685-2535) published by Universitas Pendidikan Indonesia (UPI)

Indexed by:

           

 

p-ISSN:2685-2489 | e-ISSN:2685-2535

 

Visitor Number :

View My Stats