Effects of Soil Textures, Soil Settlements, and Soil Water-Holding Capacity on Landslides: An Experimental Study for Science Teachers
Abstract
Experimentation is a contributing factor to the interest and meaningful learning of Science. In Geology and Earth Science, the effects of soil textures, settlements, and water-holding capacity are parameters for landslides in Barotac Viejo and other flooded areas. Landslides are triggered during heavy rainstorms, causing severe property damage and casualties. This experimental study aims to determine how these parameters are factors for landslides and give accurate information to Science teachers. The study uses two methods to provide ease and continuity of measurements and settings using the Fourier Transform Infrared(FTIR) spectroscopy in analyzing the soil textures. The Imhoff cone instrument is for the settling and water-holding capacity of the soil. FTIR Soil analysis reveals that contents of clay and organic matter directly affect soil water-holding ability due to the larger surface area. A landslide-prone zone has a lesser settling time except for the sand that settles fastest due to larger masses. This study is crucial for science teachers teaching geology and earth sciences besides forecasting and preventing geohydrological processes and developing better landslide warning strategies to mitigate risks and reduce socioeconomic damage.
Full Text:
Download PDFReferences
Alamanis, N., Papageorgiou, G., Xafoulis, N., & Chouliaras, I. (2020). Effects of Landslides and Soil Settlements on the Built Environment: A Meta-analysis. 7. 6-15.
Babaeian, E., M. Homaee, C. Montzka, H. Vereecken, and A.A. Norouzi. (2015). Towards retrieving soil hydraulic properties by hyperspectral remote sensing. Vadoze Zone J. 14(3),doi: 10.2136/ vzj2014.07.0080.
Dariagan, J.D., Atando, R.B. & Asis, J.L.B. (2021) Disaster preparedness of local governments in Panay Island, Philippines. Nat Hazards 105, 1923–1944. https://doi.org/10.1007/s11069-020-04383-0.
Guerrero, C., Viscarra R.R.A, & Mouazen, A. M. (2010). Diffuse reflectance spectroscopy in soil science and land resource assessment. Geoderma. 158: 1-2.
Hassani, A., Bahrami, H., Noroozi, A., & Oustan, S. (2014). Visible-near infrared reflectance spectroscopy for assessment of soil properties in gypseous and calcareous soils. Journal of Watershed Engineering and Management, 6(2), 125- 138.
Iurian, A. R, Cosma, C. (2014). A practical experimental approach for the determination of gamma-emitting radionuclides in environmental samples. Nucl. is unknown and the path forwards. Plant and Soil, 375, 1e19.
Jaggi, N., & Vij, D. (2006). Fourier transform infrared spectroscopy. In Handbook of Applied Solid State Spectroscopy. Boston: Springer, 411-450.
Luino, F., De Graff, J., Biddoccu, M., Faccini, F., Freppaz, M., Roccati, A., Ungaro, F., Amico, M., Turconi, L. (2022). The Role of Soil Type in Triggering Shallow Landslides in the Alps (Lombardy, Northern Italy). Land 2022, 11, 1125. https://doi.org/ 10.3390/land11081125.
Margenot A.J., Calderón F.J., Goyne K.W., Mukome F.N.D & Parikh S.J. (2017). IR Spectroscopy, Soil Analysis Applications. In: Lindon, J.C., Tranter, G.E., and Koppenaal, D.W. (eds.) The Encyclopedia of Spectroscopy and Spectrometry, 3(2), 448-454.
Mohamed, E., Saleh, A., Belal, A., & Gad, A. (2018). Application of near-infrared reflectance for quantitative assessment of soil properties. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 1-14. https://doi.org/10.1016/j.ejrs.2017.02.001.
Nandiyanto, A. B.D., Oktiani,R., & Ragadhita, R. ( 2019). How to Read and Interpret FTIR Spectroscope of Organic Material. Journal of Science & Technology, 4(1), 97-118. DOI: http://dx.doi.org/10.17509/ijost.v4i1.15806.
Pajalic, S., Peranic, J., Maksimovic, S., Ceh, N., Jagodnik, V., & Arbanas, Ž. (2021). Monitoring and Data Analysis in Small-Scale Landslide Physical Model. Applied Sciences, 11, 5040. https://doi.org/10.3390/ app11115040.
Reichert, J. M., Albuquerque, J. A., Kaiser, D. R., Reinert, D. J., Urach, F. L., & Carlesso, R. (2009). Estimation of water retention and availability in soils of Rio Grande do Sul. Revista Brasileira de Ciência do Solo, 33, 1547-1560.
Rossel, R. V., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1-2), 59-75.
Saxena, N., Kumar,S., & Mandal, A.( 2018). Adsorption characteristics and kinetics of synthesized anionic surfactant and polymeric surfactant on sand surface for application in enhanced oil recovery. Asia-Pacific Journal of Chemical Engineering. 13(4), 1-14. https://doi.org/10.1002/apj.2211
Soares, B. C., de Campos, M. E. C., Thomaz, J. R., da Cruz Pereira, G., & Roehrs, R. (2016). The importance of experimentation in the teaching of sciences to elementary school. Revista Monografias Ambientais, 1-17. doi:10.5902/2236130827003.
Sojka,R. E., Carter, D. L., & Brown, M. J. ( 1992). Imhoff Cone Determination of Sediment in Irrigation Runoff. Soil Science Society of American Journal, 56:884-890.
Soriano-Disla, J. M., Janik, L. J., Viscarra Rossel, R. A., Macdonald, L. M., & McLaughlin, M. J. (2014). The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Applied spectroscopy reviews, 49(2), 139-186. http://dx.doi.org/10.1080/ 05704928.2013.811081.
Summers, D., Lewis, M., Ostendorf, B., & Chittleborough, D. (2011). Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecological Indicators, 11(1), 123-131
DOI: https://doi.org/10.17509/jsl.v6i2.54618
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Donna Hembra Gabor
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jl. Dr. Setiabudhi 229 Bandung 40154, West Java, Indonesia