A Comparative Analysis of Japanese-English Machine Translation Outputs Using Neural and Statistical Systems: Google Translate vs. Systran

Muhammad Nadzif Ramlan

Abstract


This study explores the effectiveness and accuracy of Google Translate and Systran in translating Japanese to English, focusing on syntactic and semantic error patterns. It evaluates the translation quality of the text 音楽のテンポが経済的意 思決定に及ぼす影響 “Ongaku no tenpo ga keizaiteki ishi kettei ni oyobosu eikyou” (The Effect of Music Tempo on Economic Decision-Making) by Kobayashi, Fujikawa, and Foo (2012). The methodology employs a qualitative approach, categorizing errors based on syntactic and semantic criteria. Despite advancements in Neural Machine Translation (NMT), challenges remain in achieving accurate and contextually appropriate translations, particularly for complex language pairs like Japanese-English. The study highlights the persistent issues in maintaining syntactic and semantic accuracy in translations produced by Google Translate and Systran. It underscores the importance of Machine Translation Post-Editing (MTPE) to enhance translation quality. The findings reveal that while MT systems have significantly improved, human intervention remains essential to address nuanced linguistic and cultural elements. The research emphasizes the relevance of Machine- Aided Human Translation (MAHT) as a balanced approach, combining the efficiency of MT with human expertise to ensure high-quality translations. This approach is crucial for fostering better cross-cultural communication and understanding in the translation industry.


Keywords


Machine translation; Neural; Post-editing; Syntax; Semantics.

Full Text:

PDF

References


Arcan, M., & Buitelaar, P. (2017). Translating domain-specific expressions in knowledge bases with neural machine translation. CoRR, .Retrieved from 1709.02184 (arxiv.org)

Bentivogli, L., Bisazza, A., Cettolo, M., & Federico, M. (2016). Neural versus phrase-based machine translation quality: A case study. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (pp. 257-267). Austin, TX: Association for Computational Linguistics.

Brown, P. F., Cocke, J., Della Pietra, S. A., Della Pietra, V. J., Jelinek, F., Lafferty, J. D., ... & Mercer, R. L. (1990). A statistical approach to machine translation. Computational Linguistics, 16(2), 79-85. Retrieved from https://aclanthology.org/J90-2002.pdf

Comparin, L. (2016). Quality in machine translation and human post-editing: Error annotation and specifications. (Master’s thesis, Universidade de Lisboa). Retrieved from https://repositorio.ul.pt/bitstream/10451/27969/1/ulfl233806_tm.pdf

Dabre, P. R. N. (2018). Tei risousu kikai honyaku ni okeru ta gengosei to ten'i gakushuu no katsuyou [Exploiting multilingualism and transfer learning for low resource machine translation]. (Doctoral dissertation, Kyoto University).

Dabre, R., Chu, C., & Kunchukuttan, A. (2020). Multilingual neural machine translation. International Conference on Computational Linguistics. Retrieved from https://aclanthology.org/2020.coling-tutorials.3.pdf

Feely, W., Hasler, E., & de Gispert, A. (2019). Controlling Japanese honorifics in English-to-Japanese neural machine translation. In Proceedings of the 6th Workshop on Asian Translation (pp. 45-53). https://aclanthology.org/D19-5203.pdf

Freitag, M., Foster, G., Grangier, D., Ratnakar, V., Tan, Q., & Macherey, W. (2021). Experts, errors, and context: A large-scale study of human evaluation for machine translation. Transactions of the Association for Computational Linguistics, 9, 1460-1474. https://doi.org/10.1162/tacl_a_00437

Gouadec, D. (2007). Translation as A Profession. Amsterdam/Philadelphia: John Benjamins Publishing Company.

Hutchins, E. (1995). Cognition in The Wild. Cambridge, MA: MIT Press.

Kay, M. (1997). The proper place of men and machines in language translation. Machine Translation, 12(1-2), 3-23. https://link.springer.com/article/10.1023/A:1007912516632

Kobayashi, Y., Fujikawa, T., & Foo, Y. C. (2012). Ongaku no tenpo ga keizaiteki ishi kettei ni oyobosu eikyou [The effect of music tempo on economic decision-making]. Journal of the Society of Mechanical Engineers, 78(397). https://doi.org/10.1299/jsmeshd.2012.397

Koehn, P., & Knowles, R. (2017). Six challenges for neural machine translation. In Proceedings of the First Workshop on Neural Machine Translation (pp. 28-39). Vancouver: Association for Computational Linguistics. https://aclanthology.org/W17-3204/

Li, X. (2015). A study on computer-aided translation technology in the era of globalization and information. North China University of Water Resources and Electric Power.

Munday, J. (2009). The Routledge Companion to Translation Studies. London: Routledge.

Munday, J. (2016). Introducing translation studies: Theories and applications. London: Routledge.

Nakazawa, T. (2017). Kikai honyaku no atarashīii paradaimu: Nyuuraru kikai honyaku no genri [New paradigm for machine translation: How the neural machine translation works]. Journal of Information Processing and Management, 60(5), 299-306. https://www.jstage.jst.go.jp/article/johokanri/60/5/60_299/_pdf/-char/ja

Ramlan, M. N. (2021a). Comparative ethnolinguistics on metaphorical interpretations in Japanese kotowaza and Malay proverbs. IZUMI, 10(2), 221-238. https://doi.org/10.14710/izumi.10.2.221-238

Ramlan, M. N. (2021b). Hana wa sakuragi: Discourse analysis of cherry blossoms in haiku of ‘The Great Four’. Japanese Research on Linguistics, Literature, and Culture, 4(1), 1-15. https://doi.org/10.33633/jr.v4i1.5285

Norwati, R. (2019). History and development of machine translation. (Doctoral Dissertation. Universiti Kebangsaan Malaysia).

Popović, M. (2018). Error classification and analysis for machine translation quality assessment. In Moorkens, J., Castilho, S., Gaspari, F., & Doherty, S. (Eds.), Translation quality assessment: Machine translation: Technologies and applications (Vol. 1, pp. 159-176). Cham: Springer. https://doi.org/10.1007/978-3-319-91241-7_7

Sennrich, R. (2017). How grammatical is character-level neural machine translation? Assessing MT quality with contrastive translation pairs. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers (pp. 376-382). Valencia, Spain: Association for Computational Linguistics. https://aclanthology.org/E17-2060.pdf

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems, 27, 3104-3112. Retrieved from https://papers.nips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

Toral, A., & Way, A. (2018). What level of quality can neural machine translation attain on literary text? In Moorkens, J., Castilho, S., Gaspari, F., & Doherty, S. (Eds.), Translation quality assessment: Machine translation: Technologies and applications (Vol. 1, pp. 263-287). Cham: Springer. https://doi.org/10.1007/978-3-319-91241-7_12

Yamagishi, H., Kanouchi, S., Sato, T., & Komachi, M. (2016). Controlling the voice of a sentence in Japanese-to-English neural machine translation. In Proceedings of the 3rd Workshop on Asian Translation (WAT2016) (pp. 203-210). Osaka, Japan: The COLING 2016 Organizing Committee. Retrieved from https://aclanthology.org/W16-4620/

Yanase, Y., & Lees, D. (2020). Nihongo (L1) kara eigo (L2) ni kikai honyaku sa reta akademikku essei ni okeru eraa no bunrui: ― Kyoto daigaku EGAP raitingu kurasu de erareta gutaitekina kekka to ippanteki na shisa ― [Categorizing Errors in Machine-translated Academic Essays from Japanese (L1) to English (L2): Some Specific Findings and General Implications from Kyoto University EGAP Writing Classes]. Retrieved from https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/274096

Zhu, Z. (2015). Evaluating Neural Machine Translation in English-Japanese Task. In Proceedings of the 2nd Workshop on Asian Translation (WAT2015), pages 61–68, Kyoto, Japan. Workshop on Asian Translation. Retrieved from https://aclanthology.org/W15-5007/




DOI: https://doi.org/10.17509/japanedu.v9i1.62650

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JAPANEDU: Jurnal Pendidikan dan Pengajaran Bahasa Jepang

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Published by:
Department of Japanese Language Education, Faculty of Language and Literature Education  
Universitas Pendidikan Indonesia
Online ISSN:
2528-5548
 

 

JAPANEDU: Jurnal Pendidikan dan Pengajaran Bahasa Jepang (e-ISSN:2528-5548) lisenced under a Creative Commons Attribution-ShareAlike 4.0 Internasional (CC BY-SA 4.0)