Chemical Looping Systems for Hydrogen Production and Their Implementation in Aspen Plus Software: A Review and Bibliometric Analysis

Esteban Vanegas, Mario Luna-DelRisco, Lisandra Rocha-Meneses, Carlos E. Arrieta, Jorge Sierra, Hernando A. Yepes

Abstract


Hydrogen (H₂) production is a key strategy for reducing greenhouse gas emissions, providing a clean and efficient energy alternative. This review explores chemical looping combustion (CLC) for H₂ production, focusing on feedstocks, oxygen carriers (OCs), and process modeling in Aspen Plus®. A bibliometric analysis was conducted to support the review. Results indicate that methane (CH₄) outperforms biomass due to its higher efficiency and stable reaction behavior. Iron- and nickel-based oxides are the most effective OCs, with iron facilitating water splitting and nickel excelling in steam methane reforming (SMR) and chemical looping reforming (CLR). Enhancing OCs with support materials and sorbents improves system performance. Accurate simulations using Rgibbs and fluidized bed models are essential for optimizing the process. This study provides insights into improving H₂ production efficiency, contributing to advancements in clean energy technologies.

Keywords


Aspen plus; Chemical looping; CO2 capture; Feedstock; Hydrogen; Oxygen carrier

Full Text:

PDF

References


Campbell, B. M., Hansen, J., Rioux, J., Stirling, C. M., Twomlow, S., and Eva (Lini) Wollenberg. (2018). Urgent action to combat climate change and its impacts (SDG 13): Transforming agriculture and food systems. Current Opinion in Environmental Sustainability, 34, 13-20.

Ramezani, R., Di Felice, L., and Gallucci, F. (2023). A review of chemical looping reforming technologies for hydrogen production: Recent advances and future challenges. Journal of Physics: Energy, 5(2), 024010.

Li, J., Zhang, H., Gao, Z., Fu, J., Ao, W., and Dai, J. (2017). CO2 capture with chemical looping combustion of gaseous fuels: An overview. Energy and Fuels, 31(4), 3475-3524.

Jacobson, T. A., Kler, J. S., Hernke, M. T., Braun, R. K., Meyer, K. C., and Funk, W. E. (2019). Direct human health risks of increased atmospheric carbon dioxide. Nature Sustainability, 2(8), 691-701.

Stoppacher, B., Sterniczky, T., Bock, S., and Hacker, V. (2022). On-site production of high-purity hydrogen from raw biogas with fixed-bed chemical looping. Energy Conversion and Management, 268, 115971.

Luo, M., Yi, Y., Wang, S., Wang, Z., Du, M., Pan, J., and Wang, Q. (2018). Review of hydrogen production using chemical-looping technology. Renewable and Sustainable Energy Reviews, 81, 3186-3214.

Banerjee, S., and Agarwal, R. (2015). Transient reacting flow simulation of spouted fluidized bed for coal-direct chemical looping combustion with different Fe-based oxygen carriers. Applied Energy, 160, 552-560.

Zhou, L., Deshpande, K., Zhang, X., and Agarwal, R. K. (2020). Process simulation of chemical looping combustion using ASPEN plus for a mixture of biomass and coal with various oxygen carriers. Energy, 195, 116955.

Jasper, M., Shahbazi, A., Schimmel, K., Li, F., and Wang, L. (2023). Aspen Plus simulation of Chemical Looping Combustion of syngas and methane in fluidized beds. Discover Chemical Engineering, 3(1), 4.

Kappagantula, R. V., Ingram, G. D., and Vuthaluru, H. B. (2022). Application of aspen plus fluidized bed reactor model for chemical looping of synthesis gas. Fuel, 324, 124698.

Qi, J., Liu, J., Chen, G., Yao, J., Yan, B., Yi, W., Zao, H., and Xu, S. (2023). Hydrogen production from municipal solid waste via chemical looping gasification using CuFe2O4 spinel as oxygen carrier: An Aspen Plus modeling. Energy Conversion and Management, 294, 117562.

Nandiyanto, A. B. D., Ragadhita, R., Fiandini, M., Al Husaeni, D. N., and Aziz, M. (2023). The role of iron oxide in hydrogen production: Theory and bibliometric analyses. Moroccan Journal of Chemistry, 11(04), 897-916.

Rochman, S., Rustaman, N., Ramalis, T. R., Amri, K., Zukmadini, A. Y., Ismail, I., and Putra, A. H. (2024). How bibliometric analysis using VOSviewer is based on artificial intelligence data (using ResearchRabbit Data): Explore research trends in hydrology content. ASEAN Journal of Science and Engineering, 4(2), 251-294.

Al Husaeni, D. N., and Al Husaeni, D. F. (2022). How to calculate bibliometrics using vosviewer with publish or perish (using Scopus data): Science education keywords. Indonesian Journal of Educational Research and Technology, 2(3), 247-274.

Al Husaeni, D. F., and Nandiyanto, A. B. D. (2022). Bibliometric using Vosviewer with Publish or Perish (using Google Scholar data): From step-by-step processing for users to the practical examples in the analysis of digital learning articles in pre and post Covid-19 pandemic. ASEAN Journal of Science and Engineering, 2(1), 19-46.

Marín-Rodríguez, N. J., Vega, J., Zanabria, O. B., González-Ruiz, J. D., and Botero, S. (2024). Towards an understanding of landslide risk assessment and its economic losses: A scientometric analysis. Landslides, 21(8), 1865-1881.

Augusto, B., Rafael, S., Coelho, M. C., and Ferreira, J. (2024). Connecting the dots between urban morphology and the air quality of cities under a changing climate: A bibliometric analysis. Sustainability, 16(1), 18.

Liu, Y., Chen, S., Yang, B., Liu, K., and Zheng, C. (2015). First and second thermodynamic-law comparison of biogas MILD oxy-fuel combustion moderated by CO2 or H2O. Energy Conversion and Management, 106, 625-634.

Surendra, K. C., Takara, D., Hashimoto, A. G., and Khanal, S. K. (2014). Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 31, 846-859.

Kong, F., Swift, J., Zhang, Q., Fan, L. S., and Tong, A. (2020). Biogas to H2 conversion with CO2 capture using chemical looping technology: Process simulation and comparison to conventional reforming processes. Fuel, 279, 118479.

Rasi, S., Veijanen, A., and Rintala, J. (2007). Trace compounds of biogas from different biogas production plants. Energy, 32(8), 1375-1380.

Nahar, G., Mote, D., and Dupont, V. (2017). Hydrogen production from reforming of biogas: Review of technological advances and an Indian perspective. Renewable and Sustainable Energy Reviews, 76, 1032-1052.

Zhao, X., Joseph, B., Kuhn, J., and Ozcan, S. (2020). Biogas reforming to syngas: A review. IScience, 23(5), 1-46.

Mendiara, T., Cabello, A., Izquierdo, M. T., Abad, A., Mattisson, T., and Adánez, J. (2021). Effect of the presence of siloxanes in biogas chemical looping combustion. Energy and Fuels, 35(18), 14984-14994.

Pandey, B., Prajapati, Y. K., and Sheth, P. N. (2019). Recent progress in thermochemical techniques to produce hydrogen gas from biomass: A state-of-the-art review. International Journal of Hydrogen Energy, 44(47), 25384-25415.

Zhao, X., Zhou, H., Sikarwar, V. S., Zhao, M., Park, A. H. A., Fennell, P. S., Shen, L., and Fan, L. S. (2017). Biomass-based chemical looping technologies: The good, the bad and the future. Energy and Environmental Science, 10(9), 1885-1910.

Marrugo, G., Valdes, C. F., and Chejne, F. (2016). Characterization of Colombian agroindustrial biomass residues as energy resources. Energy and Fuels, 30(10), 8386-8398.

Mercado, J. P., Ubando, A. T., Gonzaga, J. A., and Naqvi, S. R. (2023). Life cycle assessment of a biomass based chemical looping combustion. Environmental Research, 217, 114876.

Adánez-Rubio, I., Abad, A., Gayán, P., De Diego, L. F., García-Labiano, F., and Adánez, J. (2014). Biomass combustion with CO2 capture by chemical looping with oxygen uncoupling (CLOU). Fuel Processing Technology, 124, 104-114.

Coppola, A., and Scala, F. (2021). Chemical looping for combustion of solid biomass: A review. Energy and Fuels, 35(23), 19248-19265.

Stenberg, V., Ryden, M., Mattisson, T., and Lyngfelt, A. (2018). Exploring novel hydrogen production processes by integration of steam methane reforming with chemical-looping combustion (CLC-SMR) and oxygen carrier aided combustion (OCAC-SMR). International Journal of Greenhouse Gas Control, 74, 28-39.

Magdziarz, A., Dalai, A. K., and Koziński, J. A. (2016). Chemical composition, character, and reactivity of renewable fuel ashes. Fuel, 176, 135-145.

Ajorloo, M., Ghodrat, M., Scott, J., and Strezov, V. (2022). Recent advances in thermodynamic analysis of biomass gasification: A review on numerical modelling and simulation. Journal of the Energy Institute, 102, 395-419.

Penthor, S., Mayer, K., Kern, S., Kitzler, H., Wöss, D., Pröll, T., and Hofbauer, H. (2014). Chemical-looping combustion of raw syngas from biomass steam gasification–Coupled operation of two dual fluidized bed pilot plants. Fuel, 127, 178-185.

Samprón, I., Cabello, A., García-Labiano, F., Izquierdo, M. T., and de Diego, L. F. (2023). An innovative Cu-Al oxygen carrier for the biomass chemical looping gasification process. Chemical Engineering Journal, 465, 142919.

Salkuyeh, Y. K., Saville, B. A., and MacLean, H. L. (2018). Techno-economic analysis and life cycle assessment of hydrogen production from different biomass gasification processes. International Journal of Hydrogen Energy, 43(20), 9514-9528.

Gopaul, S. G., Dutta, A., and Clemmer, R. (2014). Chemical looping gasification for hydrogen production: A comparison of two unique processes simulated using ASPEN Plus. International Journal of Hydrogen Energy, 39(11), 5804-5817.

Nimmas, T., Wongsakulphasatch, S., Cheng, C. K., and Assabumrungrat, S. (2020). Bi-metallic CuO-NiO based multifunctional material for hydrogen production from sorption-enhanced chemical looping autothermal reforming of ethanol. Chemical Engineering Journal, 398, 125543.

García-Díez, E., García-Labiano, F., De Diego, L. F., Abad, A., Gayán, P., Adánez, J., and Ruíz, J. A. C. (2016). Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities. Applied Energy, 169, 491-498.

Li, G., Zhang, Z., You, F., Pan, Z., Zhang, X., Dong, J., and Gao, X. (2013). A novel strategy for hydrous-ethanol utilization: Demonstration of a spark-ignition engine fueled with hydrogen-rich fuel from an onboard ethanol/steam reformer. International journal of hydrogen energy, 38(14), 5936-5948.

Wang, K., Dou, B., Jiang, B., Song, Y., Zhang, C., Zhang, Q., Chen, H., and Xu, Y. (2016). Renewable hydrogen production from chemical looping steam reforming of ethanol using xCeNi/SBA-15 oxygen carriers in a fixed-bed reactor. International Journal of Hydrogen Energy, 41(30), 12899-12909.

Adánez-Rubio, I., Ruiz, J. A., García-Labiano, F., de Diego, L. F., and Adánez, J. (2021). Use of bio-glycerol for the production of synthesis gas by chemical looping reforming. Fuel, 288, 119578.

Charisiou, N. D., Italiano, C., Pino, L., Sebastian, V., Vita, A., and Goula, M. A. (2020). Hydrogen production via steam reforming of glycerol over Rh/γ-Al2O3 catalysts modified with CeO2, MgO or La2O3. Renewable Energy, 162, 908-925.

Jiang, B., Dou, B., Song, Y., Zhang, C., Du, B., Chen, H., ... and Xu, Y. (2015). Hydrogen production from chemical looping steam reforming of glycerol by Ni-based oxygen carrier in a fixed-bed reactor. Chemical Engineering Journal, 280, 459-467.

Voitic, G., and Hacker, V. (2016). Recent advancements in chemical looping water splitting for the production of hydrogen. Rsc Advances, 6(100), 98267-98296.

Xu, T., Jiang, C., Wang, X., and Xiao, B. (2021). Bio-oil chemical looping reforming coupled with water splitting for hydrogen and syngas coproduction: Effect of supports on the performance of Ni-Fe bimetallic oxygen carriers. Energy Conversion and Management, 244, 114512.

Khan, M. N., and Shamim, T. (2014). Investigation of hydrogen production using chemical looping reforming. Energy Procedia, 61, 2034-2037.

Nadgouda, S. G., Kathe, M. V., and Fan, L. S. (2017). Cold gas efficiency enhancement in a chemical looping combustion system using staged H2 separation approach. International Journal of Hydrogen Energy, 42(8), 4751-4763.

Yang, Q., Yan, M., Zhang, L., Xia, X., Zhu, Y., Zhang, C., Zhao, B., Xiaoxun M., and Wang, X. (2021). Thermodynamic analysis of chemical looping coupling process for coproducing syngas and hydrogen with in situ CO2 utilization. Energy Conversion and Management, 231, 113845.

He, Y., Zhu, L., Li, L., and Liu, G. (2020). Hydrogen and power cogeneration based on chemical looping combustion: Is it capable of reducing carbon emissions and the cost of production?. Energy and Fuels, 34(3), 3501-3512.

Argyris, P. A., Wright, A., Qazvini, O. T., and Spallina, V. (2022). Dynamic behaviour of integrated chemical looping process with pressure swing adsorption in small scale on-site H2 and pure CO2 production. Chemical Engineering Journal, 428, 132606.

Adánez-Rubio, I., García-Labiano, F., Abad, A., de Diego, L. F., and Adánez, J. (2022). Synthesis gas and H2 production by chemical looping reforming using bio-oil from fast pyrolysis of wood as raw material. Chemical Engineering Journal, 431, 133376.

Yahom, A., Powell, J., Pavarajarn, V., Onbhuddha, P., Charojrochkul, S., and Assabumrungrat, S. (2014). Simulation and thermodynamic analysis of chemical looping reforming and CO2 enhanced chemical looping reforming. Chemical Engineering Research and Design, 92(11), 2575-2583.

Lu, C., Xu, R., khan Muhammad, I., Zhu, X., Wei, Y., Qi, X., and Li, K. (2021). Thermodynamic evolution of magnetite oxygen carrier via chemical looping reforming of methane. Journal of Natural Gas Science and Engineering, 85, 103704.

Miyahira, K., and Aziz, M. (2022). Hydrogen and ammonia production from low-grade agricultural waste adopting chemical looping process. Journal of Cleaner Production, 372, 133827.

Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P., & De Diego, L. F. (2012). Progress in chemical-looping combustion and reforming technologies. Progress in energy and combustion science, 38(2), 215-282.

Hu, J., Zhang, T., Zhang, Q., Yan, X., Zhao, S., Dang, J., and Wang, W. (2021). Application of calcium oxide/ferric oxide composite oxygen carrier for corn straw chemical looping gasification. Bioresource Technology, 330, 125011.

Liu, G., and Lisak, G. (2023). Cu-based oxygen carriers for chemical looping processes: Opportunities and challenges. Fuel, 342, 127828.

de las Obras Loscertales, M., Abad, A., García-Labiano, F., Ruiz, J. A., and Adánez, J. (2023). Reaction kinetics of a NiO-based oxygen carrier with ethanol to be applied in chemical looping processes. Fuel, 345, 128163.

Sun, Z., and Aziz, M. (2021). Thermodynamic analysis of a tri-generation system driven by biomass direct chemical looping combustion process. Energy Conversion and Management, 244, 114517.

Yu, Z., Yang, Y., Yang, S., Zhang, Q., Zhao, J., Fang, Y., Xiaogang, H., and Guan, G. (2019). Iron-based oxygen carriers in chemical looping conversions: A review. Carbon Resources Conversion, 2(1), 23-34.

Fang, H., Haibin, L., and Zengli, Z. (2009). Advancements in development of chemical‐looping combustion: A review. International Journal of Chemical Engineering, 2009(1), 710515.

Di, Z., Cao, Y., Yang, F., Zhang, K., and Cheng, F. (2019). Thermodynamic analysis on the parametric optimization of a novel chemical looping methane reforming in the separated productions of H2 and CO. Energy Conversion and Management, 192, 171-179.

Gao, G., Lai, Y., and Wang, S. (2023). Particle-resolved simulation of Fe-based oxygen carrier in chemical looping hydrogen generation. International Journal of Hydrogen Energy, 48(89), 34624-34633.

Roslan, N. A., Abidin, S. Z., Ideris, A., and Vo, D. V. N. (2020). A review on glycerol reforming processes over Ni-based catalyst for hydrogen and syngas productions. International Journal of Hydrogen Energy, 45(36), 18466-18489.

Zhu, L., Xie, N., Jiang, P., Li, L., and Chen, H. (2016). Double-stage chemical looping combustion combined with sorption enhanced natural gas steam reforming process for hydrogen and power cogeneration: Thermodynamic investigation. Chemical Engineering Research and Design, 114, 247-257.

Stenberg, V., Spallina, V., Mattisson, T., and Rydén, M. (2021). Techno-economic analysis of processes with integration of fluidized bed heat exchangers for H2 production–Part 2: Chemical-looping combustion. International Journal of Hydrogen Energy, 46(50), 25355-25375.

Das, S., Biswas, A., Tiwary, C. S., and Paliwal, M. (2022). Hydrogen production using chemical looping technology: A review with emphasis on H2 yield of various oxygen carriers. International Journal of Hydrogen Energy, 47(66), 28322-28352.

Chen, X., Zou, G., Yuan, Y., Xu, Z., and Zhao, H. (2023). Flame spray pyrolysis synthesized Ni-doped Fe/Ce oxygen carriers for chemical looping dry reforming of methane. Fuel, 343, 127913.

Herrer, M., Plou, J., Durán, P., Herguido, J., and Peña, J. A. (2015). Hydrogen from synthetic biogas via SIP using NiAl2O4 catalyst: Reduction stage. International Journal of Hydrogen Energy, 40(15), 5244-5250.

Plou, J., Durán, P., Herguido, J., and Peña, J. A. (2014). Purified hydrogen from synthetic biogas by joint methane dry reforming and steam-iron process: Behaviour of metallic oxides and coke formation. Fuel, 118, 100-106.

Luo, C., Dou, B., Zhang, H., Liu, D., Zhao, L., Chen, H., and Xu, Y. (2021). Co-production of hydrogen and syngas from chemical looping water splitting coupled with decomposition of glycerol using Fe-Ce-Ni based oxygen carriers. Energy Conversion and Management, 238, 114166.

Hosseini, S. Y., Khosravi-Nikou, M. R., and Shariati, A. (2019). Production of hydrogen and syngas using chemical looping technology via cerium-iron mixed oxides. Chemical Engineering and Processing-Process Intensification, 139, 23-33.

Wei, G., Huang, J., Fan, Y., Huang, Z., Zheng, A., He, F., Junguang, M., Dongyan, Z., Kun, Z., Zenglin, Z., and Li, H. (2019). Chemical looping reforming of biomass based pyrolysis gas coupling with chemical looping hydrogen by using Fe/Ni/Al oxygen carriers derived from LDH precursors. Energy Conversion and Management, 179, 304-313.

Wang, N., Guo, X., Ma, S., and Feng, Y. (2023). Understanding the synergistic effect of Ni/Al2O3 on CO2 adsorption and sintering properties of CaO in sorption-enhanced steam reforming process. Fuel, 341, 127766.

Nandy, A., Loha, C., Gu, S., Sarkar, P., Karmakar, M. K., and Chatterjee, P. K. (2016). Present status and overview of chemical looping combustion technology. Renewable and Sustainable Energy Reviews, 59, 597-619.

Abbasi, M., Farniaei, M., Rahimpour, M. R., and Shariati, A. (2015). Simultaneous syngas production with different H2/CO ratio in a multi-tubular methane steam and dry reformer by utilizing of CLC. Journal of Energy Chemistry, 24(1), 54-64.

Alirezaei, I., Hafizi, A., and Rahimpour, M. R. (2018). Syngas production in chemical looping reforming process over ZrO2 promoted Mn-based catalyst. Journal of CO2 Utilization, 23, 105-116.

Hossain, M. M., and de Lasa, H. I. (2008). Chemical-looping combustion (CLC) for inherent CO2 separations—a review. Chemical Engineering Science, 63(18), 4433-4451.

Idziak, K., Czakiert, T., Krzywanski, J., Zylka, A., Kozlowska, M., and Nowak, W. (2020). Safety and environmental reasons for the use of Ni-, Co-, Cu-, Mn-and Fe-based oxygen carriers in CLC/CLOU applications: An overview. Fuel, 268, 117245.

Abuelgasim, S., Wang, W., and Abdalazeez, A. (2021). A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress. Science of The Total Environment, 764, 142892.

Wang, B., Li, H., Wang, W., Luo, C., and Mei, D. (2020). Chemical looping combustion of lignite with the CaSO4–CoO mixed oxygen carrier. Journal of the Energy Institute, 93(3), 1229-1241.

Zheng, M., Shen, L., and Feng, X. (2014). In situ gasification chemical looping combustion of a coal using the binary oxygen carrier natural anhydrite ore and natural iron ore. Energy conversion and management, 83, 270-283.

Wang, B., Guo, C., Xu, B., Li, X., Ma, J., Ji, J., Mei, D., and Zhao, H. (2021). Synergistic reaction investigation of the NiO modified CaSO4 oxygen carrier with lignite for simultaneous CO2 capture and SO2 removal. Fuel Processing Technology, 220, 106895.

Song, T., Zheng, M., Shen, L., Zhang, T., Niu, X., and Xiao, J. (2013). Mechanism investigation of enhancing reaction performance with CaSO4/Fe2O3 oxygen carrier in chemical-looping combustion of coal. Industrial and Engineering Chemistry Research, 52(11), 4059-4071.

Di, Z., Yang, F., Cao, Y., Zhang, K., Guo, Y., Gao, S., and Cheng, F. (2019). The transformation pathways on the catalytic and stability-promoted CaSO4 reduction in CLC process using Fe2O3 supported. Fuel, 253, 327-338.

Heidari, M., Tahmasebpoor, M., Antzaras, A., and Lemonidou, A. A. (2020). CO2 capture and fluidity performance of CaO-based sorbents: Effect of Zr, Al and Ce additives in tri-, bi-and mono-metallic configurations. Process Safety and Environmental Protection, 144, 349-365.

Zhu, L., Li, L., and Fan, J. (2015). A modified process for overcoming the drawbacks of conventional steam methane reforming for hydrogen production: Thermodynamic investigation. Chemical Engineering Research and Design, 104, 792-806.

Ganesh, I. (2013). A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications. International Materials Reviews, 58(2), 63-112.

Hafizi, A., and Rahimpour, M. R. (2018). Inhibiting Fe–Al spinel formation on a narrowed mesopore-sized MgAl2O4 support as a novel catalyst for H2 production in chemical looping technology. Catalysts, 8(1), 27.

Nascimento, R. A., Medeiros, R. L., Costa, T. R., Oliveira, Â. A., Macedo, H. P., Melo, M. A., and Melo, D. M. (2020). Mn/MgAl 2 O 4 oxygen carriers for chemical looping combustion using coal: Influence of the thermal treatment on the structure and reactivity. Journal of Thermal Analysis and Calorimetry, 140, 2673-2685.

Cabello, A., Dueso, C., García-Labiano, F., Gayán, P., Abad, A., De Diego, L. F., and Adánez, J. (2014). Performance of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier with CH4 and H2S in a 500 Wth CLC unit. Fuel, 121, 117-125.

Huang, J., Liu, W., and Yang, Y. (2017). Phase interactions in Mg-Ni-Al-O oxygen carriers for chemical looping applications. Chemical Engineering Journal, 326, 470-476.

Lyngfelt, A. (2020). Chemical looping combustion: Status and development challenges. Energy and Fuels, 34(8), 9077-9093.

Porrazzo, R., White, G., and Ocone, R. (2014). Aspen Plus simulations of fluidised beds for chemical looping combustion. Fuel, 136, 46-56.

Singhal, A., Cloete, S., Quinta-Ferreira, R., and Amini, S. (2017). Multiscale modeling of a packed bed chemical looping reforming (pbclr) reactor. Energies, 10(12), 2056.

Bock, S., Zacharias, R., and Hacker, V. (2020). Co-production of pure hydrogen, carbon dioxide and nitrogen in a 10kW fixed-bed chemical looping system. Sustainable Energy and Fuels, 4(3), 1417-1426.

Liu, M., Li, Y., Wang, X., Gai, Z., Rao, Q., Yang, T., Zhang, J., Tang, S., Pan, Y., and Jin, H. (2024). Synergistic promotions between high purity H2 production and CO2 capture via sorption enhanced chemical looping reforming. Fuel Processing Technology, 254, 108042.

Wang, I., Liu, L., Yu, S., Lai, N. C., Gao, Y., Li, Z., Liu, J., and Wang, W. (2024). Highly sintering-resistant iron oxide with a hetero-oxide shell for chemical looping water splitting. International Journal of Hydrogen Energy, 57, 438-449.

Farooqui, A., Angal, P., Shamim, T., Santarelli, M., and Mahinpey, N. (2021). Performance assessment of thermochemical CO2/H2O splitting in moving bed and fluidized bed reactors. International Journal of Hydrogen Energy, 46(58), 29774-29794.

Zhou, Z., Han, L., and Bollas, G. M. (2014). Overview of chemical-looping reduction in fixed bed and fluidized bed reactors focused on oxygen carrier utilization and reactor efficiency. Aerosol and Air Quality Research, 14(2), 559-571.

Haider, S. K., Duan, L., Patchigolla, K., and Anthony, E. J. (2016). A hydrodynamic study of a fast‐bed dual circulating fluidized bed for chemical looping combustion. Energy Technology, 4(10), 1254-1262.

Zhou, K., Jia, J., Li, X., Pang, X., Li, C., Zhou, J., Luo, G., and Wei, F. (2013). Continuous vinyl chloride monomer production by acetylene hydrochlorination on Hg-free bismuth catalyst: From lab-scale catalyst characterization, catalytic evaluation to a pilot-scale trial by circulating regeneration in coupled fluidized beds. Fuel processing technology, 108, 12-18.

Hsieh, T. L., Xu, D., Zhang, Y., Nadgouda, S., Wang, D., Chung, C., Pottimurthy, Y., Guo, M., Chen, Y.-Y., Xu, M., He, P., Fan, L.-S., and Tong, A. (2018). 250 kWth high pressure pilot demonstration of the syngas chemical looping system for high purity H2 production with CO2 capture. Applied Energy, 230, 1660-1672.

Lan, W., Chen, G., Zhu, X., Wang, X., Liu, C., and Xu, B. (2018). Biomass gasification-gas turbine combustion for power generation system model based on ASPEN PLUS. Science of the total environment, 628, 1278-1286.

Dai, X. P., Li, R. J., Yu, C. C., and Hao, Z. P. (2006). Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO3 (A= La, Nd, Eu) perovskite-type oxides as oxygen storage. The Journal of Physical Chemistry B, 110(45), 22525-22531.

Moretti, L., Arpino, F., Cortellessa, G., Di Fraia, S., Di Palma, M., and Vanoli, L. (2021). Reliability of equilibrium gasification models for selected biomass types and compositions: An overview. Energies, 15(1), 61.

Mutlu, Ö. Ç., and Zeng, T. (2020). Challenges and opportunities of modeling biomass gasification in Aspen Plus: A review. Chemical Engineering and Technology, 43(9), 1674-1689.

Rydén, M., and Ramos, P. (2012). H2 production with CO2 capture by sorption enhanced chemical-looping reforming using NiO as oxygen carrier and CaO as CO2 sorbent. Fuel Processing Technology, 96, 27-36.

Medrano, J. A., Spallina, V., van Sint Annaland, M., and Gallucci, F. (2014). Thermodynamic analysis of a membrane-assisted chemical looping reforming reactor concept for combined H2 production and CO2 capture. International journal of hydrogen energy, 39(9), 4725-4738.

Rydén, M., and Lyngfelt, A. (2006). Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion. International journal of hydrogen energy, 31(10), 1271-1283.

Khan, M. N., and Shamim, T. (2016). Investigation of hydrogen generation in a three-reactor chemical looping reforming process. Applied energy, 162, 1186-1194.

Kathe, M. V., Empfield, A., Na, J., Blair, E., and Fan, L. S. (2016). Hydrogen production from natural gas using an iron-based chemical looping technology: Thermodynamic simulations and process system analysis. Applied Energy, 165, 183-201.

Meng, W. X., Banerjee, S., Zhang, X., and Agarwal, R. K. (2015). Process simulation of multi-stage chemical-looping combustion using Aspen Plus. Energy, 90, 1869-1877.

Antzaras, A. N., Heracleous, E., and Lemonidou, A. A. (2020). Sorption enhanced–chemical looping steam methane reforming: Optimizing the thermal coupling of regeneration in a fixed bed reactor. Fuel Processing Technology, 208, 106513.

Fatigati, F., Di Giuliano, A., Carapellucci, R., Gallucci, K., and Cipollone, R. (2021). Experimental characterization and energy performance assessment of a sorption-enhanced steam–methane reforming system. Processes, 9(8), 1440.

Wang, W., and Cao, Y. (2013). A combined thermodynamic and experimental study on chemical‐looping ethanol reforming with carbon dioxide capture for hydrogen generation. International journal of energy research, 37(1), 25-34.

Alam, S., and Sumana, C. (2019). Thermodynamic analysis of plant-wide CLC-SESMR scheme for H2 production: Studying the effect of oxygen carrier supports. International Journal of Hydrogen Energy, 44(5), 3250-3263.

He, Y., Zhu, L., Li, L., and Sun, L. (2019). Zero-energy penalty carbon capture and utilization for liquid fuel and power cogeneration with chemical looping combustion. Journal of Cleaner Production, 235, 34-43.

Surywanshi, G. D., Patnaikuni, V. S., Vooradi, R., and Anne, S. B. (2021). 4-E and life cycle analyses of a supercritical coal direct chemical looping combustion power plant with hydrogen and power co-generation. Energy, 217, 119418.

Stenberg, V., Spallina, V., Mattisson, T., and Rydén, M. (2020). Techno-economic analysis of H2 production processes using fluidized bed heat exchangers with steam reforming–Part 1: Oxygen carrier aided combustion. International Journal of Hydrogen Energy, 45(11), 6059-6081.

Spallina, V., Pandolfo, D., Battistella, A., Romano, M. C., Annaland, M. V. S., and Gallucci, F. (2016). Techno-economic assessment of membrane assisted fluidized bed reactors for pure H2 production with CO2 capture. Energy conversion and management, 120, 257-273.

Medrano, J. A., Potdar, I., Melendez, J., Spallina, V., Pacheco-Tanaka, D. A., van Sint Annaland, M., and Gallucci, F. (2018). The membrane-assisted chemical looping reforming concept for efficient H2 production with inherent CO2 capture: Experimental demonstration and model validation. Applied Energy, 215, 75-86.

Gupta, S. K., and Mittal, M. (2019). Analysis of cycle-to-cycle combustion variations in a spark-ignition engine operating under various biogas compositions. Energy and Fuels, 33(12), 12421-12430.

Pongboriboon, N., Mariyappan, V., Wu, W., and Chandra-Ambhorn, W. (2024). Economic and environmental analyses for achieving net-zero CO2 emissions of a green diesel production process. Journal of the Taiwan Institute of Chemical Engineers, 165, 105781.

Bilal, B., RaviKumar, M., and Workneh, S. (2018). Study on simulation of biomass gasification for syngas production in a fixed bed reactor. International Journal of Scientific Research in Science and Technology, 4(11), 139-149.




DOI: https://doi.org/10.17509/ijost.v10i2.82075

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats