Enhanced Thermal Performance of Parabolic Through Collectors with TiO₂ Nanofluids in An Arid Climate

Mohammed Abdelkrim Belhadi, Mahfoud Kadja, Farid Mechighel, Abderrahmane Khechekhouche, Youcef Hamaiti

Abstract


Solar energy is a crucial renewable resource, yet its efficient utilization remains a challenge because conventional heat transfer fluids have limited thermal conductivity. Parabolic Trough Collectors (PTCs) offer a viable solution for solar thermal energy conversion, but optimizing performance is essential for improving efficiency. This study investigates the performance of a PTC using a 0.3% TiO₂-water nanofluid compared to distilled water (DW) under real environmental conditions in Algeria’s arid climate. Two identical PTCs were tested outdoors at flow rates of 0.2, 0.3, and 0.4 L/min to evaluate heat transfer efficiency. The results demonstrated that the nanofluid consistently outperformed DW because of its superior thermal conductivity and heat retention. At 0.4 L/min, the nanofluid achieved 40% thermal efficiency, 9% higher than DW. However, as the flow rate decreased, the efficiency gap narrowed. These findings confirm the potential of nanofluids to enhance solar energy utilization, supporting sustainable energy solutions in high-irradiance regions.

Keywords


Field Experiment in Arid Climate; Heat Transfer Enhancement; Parabolic Trough Collectors; Solar Energy Efficiency; TiO₂ Nanofluids.

References


Yılmaz, İ. H., & Mwesigye, A. (2018). Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review. Applied Energy, 225, 135-174.

Bellos, E., & Tzivanidis, C. (2019). Alternative designs of parabolic trough solar collectors. Progress in Energy and Combustion Science, 71, 81-117.

Praveen, R. P., & Mouli, K. V. V. C. (2022). Performance enhancement of parabolic trough collector solar thermal power plants with thermal energy storage capability. Ain Shams Engineering Journal, 13(5), Article 101716.

Ma, X., Jin, R., Liang, S., Liu, S., & Zheng, H. (2020). Analysis of an optimal transmittance of Fresnel lens as a solar concentrator. Solar Energy, 207, 22-31.

Ghodbane, M., Benmenine, D., Khechekhouche, A., & Boumeddane, B. (2020). Brief on solar concentrators: Differences and applications. Instrumentation Mesure Métrologie, 19(5), 371-378.

Jebasingh, V. K., & Herbert, G. M. J. (2016). A review of solar parabolic trough collector. Renewable and Sustainable Energy Reviews, 54, 1085-1091.

Sun, J., Zhang, Z., Wang, L., Zhang, Z., & Wei, J. (2020). Comprehensive review of line-focus concentrating solar thermal technologies: Parabolic trough collector (PTC) vs linear Fresnel reflector (LFR). Journal of Thermal Science, 29(5), 1097-1124.

Dingding Y., Yujia Q., Yuanrui X., Kexin X., Yujie C., Xiaoping J., Kathleen B.A., Raymond R.T., Bohong W. (2024). Sequestration of carbon dioxide from the atmosphere in coastal ecosystems: Quantification, analysis, and planning. Sustainable Production and Consumption, 47, 413-424.

Bouhelal, M., Rouag, A., Bouhelal, A., & Belloufi, Y. (2023). Optimizing parabolic through collectors for solar stills: A 2D CFD parametric analysis. International Journal of Energetica, 8(2), 11-19.

Benhabib, L., Marif, Y., Hadjou Belaid, Z., Kaddour, A., Benyoucef, B., & Aillerie, M. (2021). Simulation of different modes of heat transfer on a parabolic trough solar collector. International Journal of Energetica, 6(2), 7-12.

Akilu, S., Sharma, K. V., Baheta, A. T., & Mamat, R. (2016). A review of thermophysical properties of water based composite nanofluids. Renewable and Sustainable Energy Reviews, 66, 654-678.

Hosseini, S. M. S., & Dehaj, M. S. (2021). An experimental study on energetic performance evaluation of a parabolic trough solar collector operating with Al2O3/water and GO/water nanofluids. Energy, 234, 121317.

Rehan, M. A., et al. (2018). Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions. Renewable Energy, 118, 742-751.

Subramani, J., Sevvel, P., Anbuselvam, & Srinivasan, S. A. (2021). Influence of CNT coating on the efficiency of solar parabolic trough collector using AL2O3 nanofluids - a multiple regression approach. Materials Today: Proceedings, 45, 1857-1861.

Bretado De Los Rios, M. S., Rivera-Solorio, C. I., & García-Cuéllar, A. J. (2018). Thermal performance of a parabolic trough linear collector using Al2O3/H2O nanofluids. Renewable Energy, 122, 665-673.

Khalil, A., et al. (2020). Performance analysis of direct absorption-based parabolic trough solar collector using hybrid nanofluids. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(11), 573.

Benrezkallah, A., Marif, Y., Soudani, M. E., Belhadj, M. M., Hamidatou, T., Mekhloufi, N., Aouachir, A. (2024). Thermal performance evaluation of the parabolic trough solar collector using nanofluids: A case study in the desert of Algeria. Case Studies in Thermal Engineering, 60, 104797.

Raza, S. H., et al. (2023). Experimental analysis of thermal performance of direct absorption parabolic trough collector integrating water based nanofluids for sustainable environment applications. Case Studies in Thermal Engineering, 49, 103366.

Ajay, K., & Kundan, L. (2016). Combined experimental and CFD investigation of the parabolic shaped solar collector utilizing nanofluid (CuO-H2O and SiO2-H2O) as a Working Fluid. Journal of Engineering, 2016, 1-11.

Sepahvand, P., Andalib, F. K., & Noori, S. (2022). Thermal efficiency enhancement of parabolic trough receivers using synthesized graphene oxide/SiO2 nanofluid and a rotary turbulator. International Journal of Sustainable Energy, 41(7), 772-809.

Khanafer, K., & Vafai, K. (2011). A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54(19-20), 4410-4428.

Bellos, E., Tzivanidis, C., Antonopoulos, K. A., & Gkinis, G. (2016). Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renewable Energy, 94, 213-222.

Laaraba, A., and Khechekhouche, A. (2018). Numerical simulation of natural convection in the air gap of a vertical flat plat thermal solar collector with partitions attached to its glazing. Indonesian Journal of Science and Technology, 3(2), 95-104.

Ahmad, F., Qurban, N., Fatima, Z., Ahmad, T., Zahid, I., Ali, A., Rajppot, S.R., and Maqbool, E. (2022). Electrical characterization of ii-vi thin films for solar cells application. ASEAN Journal of Science and Engineering, 2(2), 199-208.

Khamaia, D., Boudhiaf, R., Khechekhouche, A., and Driss, Z. (2022). Illizi city sand impact on the output of a conventional solar still. ASEAN Journal of Science and Engineering, 2(3), 267-272.

Bellila, A., Souyei, B., Kermerchou, I., Smakijk, N., Sadoun, A., Elsharif, N., and Siqueira A. (2024). Ethanol effect on the performance of a conventional solar still. ASEAN Journal of Science and Engineering, 4(1), 25-32.

Bhosale, S.K. (2022). Development of a solar-powered submersible pump system without the use of batteries in agriculture. Indonesian Journal of Educational Research and Technology, 2(1), 57-64.

Irawan, A.K., Rusdiana, D., Setiawan, W., Purnama, W., Fauzi, R.M., Fauzi, S.A., Alfani, A.H.F., and Arfiyogo, M.R. (2021). Design-construction of a solar cell energy water pump as a clean water source for people in Sirnajaya village, Gununghalu district. ASEAN Journal of Science and Engineering Education, 1(1), 15-20.

Kermerchou, I., Mahdjoubi, I., Kined, C., Khechekhouche, A., Bellila, A., and Isiordia, G.E.D. (2022). Palm fibers effect on the performance of a conventional solar still. ASEAN Journal for Science and Engineering in Materials, 1(1), 29-36.

Bellila, A., Khechekhouche, A., Kermerchou, I., Sadoun, A., Siqueira, A.M.D.O., Smakdji, N. (2022). Aluminum wastes effect on solar distillation. ASEAN Journal for Science and Engineering in Materials, 1(2), 49-54.




DOI: https://doi.org/10.17509/ijost.v10i1.81280

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats