Biochar from Agricultural Waste for Soil Amendment Candidate under Different Pyrolysis Temperatures

Abdul Mutolib, Ali Rahmat, Endra Triwisesa, H. Hidayat, Hari Hariadi, Kiki Kurniawan, S. Sutiharni, S. Sukamto

Abstract


Indonesia as an agricultural country produces and consumes a huge amount of fruits. One of the popular fruits is durian (Durio zibethinus), which can create issues with the high amount of durian seeds. Durian seeds can be fermented quickly. Thus, if they are not processed immediately, it causes pollution to the environment, particularly an odor issue. One of the waste management is to convert durian seed waste into biochar, an ameliorant agent to improve soil quality. This study aims to analyze the physicochemical properties of durian seed-derived biochar under different pyrolysis temperatures. The results showed that the increases in the temperature allowed the creation of more porosity in the biochars, which is due to chemical structure and crystallinity arrangement. This is confirmed by the increases in surface area and total pore volume also decreases in particle size. The change in the chemical structure can be verified by the decreases in the biochar yield. The produced biochar from fruit seeds has excellent carbon content and elemental components such as potassium, magnesium, phosphor, and sulfur, informing prospective fruit seeds as a soil amendment fertilizer

Keywords


Agricultural waste; Biochar; Durian seed; Psychochemical properties; Soil amendment

Full Text:

PDF

References


Abidi, N., Cabrales, L., and Haigler, C. H. (2014). Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydrate Polymers, 100, 9-16.

Akhtar, N., Goyal, D., and Goyal, A. (2016). Physico-chemical characteristics of leaf litter biomass to delineate the chemistries involved in biofuel production. Journal of the Taiwan Institute of Chemical Engineers, 62, 239-246.

Alhinai, M., Azad, A. K., Bakar, M. S. A., and Phusunti, N. (2018). Characterisation and thermochemical conversion of rice husk for biochar production. International Journal of Renewable Energy Research, 8(3), 1648-1656.

Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., and Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379.

Angin, D. (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology, 128, 593-597.

Antal, M. J. (2003). The art, science, and technology of charcoal production. Industrial and Engineering Chemistry Research, 42(8), 1619-1640.

Antonangelo, J. A., Zhang, H., Sun, X., and Kumar, A. (2019). Physicochemical properties and morphology of biochars as afected by feedstock sources and pyrolysis temperatures. Biochar, 1, 325-336.

Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S. (2008). Using poultry litter biochar as soil amendments. Australian Journal of Soil Research, 46(5), 437-444.

Chatterjee, R., Sajjadi, B., Chen, W., Mattern, D. L., Hammer, N., Raman, V., and Dorris, A. (2020). Effect of pyrolysis temperature on physicochemical properties and acoustic-based amination of biochar for efficient CO2 adsorption. Frontier in Energy Research, 8(85), 1-18.

Chen, B., and Chen, Z. (2009). Sorption of naphthalene and 1-naphthol by biochars of orange peels with diferent pyrolytic temperatures. Chemosphere, 76(1), 127-133.

Chen, Y., Yang, H., Wang, X., Zhang, S., and Chen, H. (2012). Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: infuence of temperature. Bioresource Technology, 107, 411-418.

Chia, C., Gong, B., Joseph, S., Marjo, C., Munroe, P., and Rich, A. (2012). Imaging of mineral-enriched biochar by FTIR, Raman and SEM–EDX. Vibrational Spectroscopy, 62, 248–257.

Chintala, R., Mollinedo, J., Schumacher, T.E., Malo, D. D., and Julson, J. L. (2014). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60(3), 393-404.

Claoston, N., Samsuri, A. W., Husni, M. H. A., and Amran, M. S. M. (2014). Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management and Research, 32(4), 331-339.

Colom, X., and Carrillo, F . (2005). Comparative study of wood samples of the northern area of Catalonia by FTIR. Journal of Wood Chemistry and Technology, 25, 1-11.

Diels, J., Vanlauwe, B., Van der Meersh, M. K, Sanginga, N., and Merck R. J. (2004). Long-term soil organic carbon dynamics in a sub humid tropical climate: 13C data and modeling with ROTHC. Soil Biology and Biochemistry, 36(11), 1739–1750.

El-Hendawy A-NA. (2006). Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions. Journal of Analytical and Applied Pyrolysis, 75(2), 159-166.

Fajrina, C., Arabia, T., and Sufardi, S. (2019). Distribusi Fe-dan Al-humus serta C organik tanah pada Entisol dan Inceptisol di Lahan Kering Jantho, Kabupaten Aceh Besar. Jurnal Ilmiah Mahasiswa Pertanian, 4(1), 664-676.

Feng, J., Wang, Y., Yi, X., Yang, W., and He, X. (2016). Phenolics from Durian Exert Pronounced NO Inhibitory and Antioxidant Activities. Journal of Agricultural and Food Chemistry, 64(21), 4273–4279.

Fiandini, M., Ragadhita, R., Nandiyanto, A. B. D., and Nugraha, W. C. (2020). Adsorption characteristics of submicron porous carbon particles prepared from rice husk. Journal of Engineering Science and Technology, 15, 022-031.

Gao, N., Quan, C., Liu, B., Li, Z., Wu, C., and Li, A. (2017). Continuous pyrolysis of sewage sludge in a screw-feeding reactor: products characterization and ecological risk assessment of heavy metals. Energy Fuels, 31(5), 5063–5072.

Hao, F., Zhao, X., Ouyang, W., Lin, C., Chen, S., Shan, Y., and Lai, X. (2013). Molecular structure of corncob-derived Biochars and the mechanism of atrazine sorption. Agronomy Journal, 105(3), 773-782.

Hossain, M. K., Strezov, V., Chan, K. Y., Ziolkowski, A., and Nelson, P. F. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92(1), 223–228.

Jamilatun, S., Pitoyo, J., Amelia, S., Ma’arif, A., Hakika, D.C., and Mufandi, I. (2022). Experimental study on the characterization of pyrolysis products from bagasse (Saccharum Officinarum L.): Bio-oil, biochar, and gas products. Indonesian Journal of Science and Technology, 7(3), 565-582.

Jin, J., Li, Y., Zhang, J., Wu, S., Cao, Y., Liang, P., Zhang, J., Wong, M., Wang, M., Shan, S., and Christie, P. (2016). Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. Journal of Hazardous Materials, 320, 417–426.

Keiluweit, M., Nico, P. S., Johnson, M. G., and Kleber, M., (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, 44(4), 1247–1253.

Lehmann, J., Gaunt, J., and Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems: A review. Mitigation and Adaptation Strategies for Global Change, 11, 403–427.

Liu, S., Zhang, Y., Zong, Y., Hu, Z., Wu, S., Zhou, J., Jin, Y., and Zou, J. (2016). Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenergy, 8(2), 392–406.

Mašek, O., Brownsort, P., Cross, A., and Sohi, A. (2013). Influence of production conditions on the yield and environmental stability of biochar. Fuel, 103, 151–155.

McCarthy, J. L., and Islam A. (1999). Lignin chemistry, technology, and utilization: a brief history. ACS Symposium Series, 742, 2-99.

Méndez, A., Terradillos, M., and Gascó. G. (2013). Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. Journal of Analytical and Applied Pyrolysis, 102, 124-130.

Mohanty, P., Nanda, S., Pant, K. K., Naik, S., Kozinski, J. A., and Dalai, A. K. (2013). Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: Effects of heating rate. Journal of Analytical and Applied Pyrolysis, 104, 485–493.

Najira, N., Selviyanti, E., Tobing, Y. B., Kasmawati, K., Sianturi, R., and Suwardi, A. B. (2020). Diversitas kultivar tanaman durian (Durio zubethinus Murr.) ditinjau dari Karakter morfologi. Jurnal Biologi Tropis, 20(2), 185-193.

Nandiyanto, A. B. D. (2020). Isotherm adsorption of carbon microparticles prepared from pumpkin (Cucurbita maxima) seeds using two-parameter monolayer adsorption models and equations. Moroccan Journal of Chemistry, 8(3), 745-741.

Nandiyanto, A. B. D., Oktiani, R., and Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97-118

Nandiyanto, A. B. D., Simbara, A. T., Mudzakir, A., and Maryanti, R. (2020a). Improving the learning process in producing bio-charcoal briquettes from durian peels/banana midrib with various particle sizes and composition to high school students. Journal of Engineering Education Transformations, 34(Special Issue), 32-42.

Nandiyanto, A. B. D., Girsang, G. C. S., Maryanti, R., Ragadhita, R., Anggraeni, S., Fauzi, F. M., Sakinah, P., Astuti, A.P., Usdiyana, D., Fiandini, M., Dewi, M.W., and Al-Obaidi, A. S. M. (2020b). Isotherm adsorption characteristics of carbon microparticles prepared from pineapple peel waste. Communications in Science and Technology, 5(1), 31-39.

Nandiyanto, A. B. D., Arinalhaq, Z. F., Rahmadianti, S., Dewi, M. W., Rizky, Y. P. C., Maulidina, A., Anggraeni, S., Bilad, M.R., and Yunas, J. (2020c). Curcumin Adsorption on Carbon Microparticles: Synthesis from Soursop (AnnonaMuricata L.) Peel Waste, Adsorption Isotherms and Thermodynamic and Adsorption Mechanism. International Journal of Nanoelectronics and Materials, 13, 173-192.

Nandiyanto, A. B. D., Maryanti, R., Fiandini, M., Ragadhita, R., Usdiyana, D., Anggraeni, S., Arwa, W.R., and Al-Obaidi, A. S. M. (2020d). Synthesis of carbon microparticles from red dragon fruit (Hylocereus undatus) peel waste and their adsorption isotherm characteristics. Molekul, 15(3), 199-209.

Nandiyanto, A. B. D., Simbara, A. T., and Girsang, G. C. S. (2021). Effects of particle size and composite composition of durian peels and banana midribs' as reinforcement components on resin-based brake pad performance. Journal of Engineering Research, 9(ASSEEE special issue), 1-15.

Nandiyanto, A. B. D., Al Husaeni, D. N., Ragadhita, R., Fiandini, M., Al Husaeni, D. F., and Aziz, M. (2022). Resin matrix composition on the performance of brake pads made from durian seeds: From computational bibliometric literature analysis to experiment. Automotive Experiences, 5(3), 328-342.

Nandiyanto, A. B. D., Ragadhita, R., and Fiandini, M. (2023). Interpretation of Fourier Transform Infrared Spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition. Indonesian Journal of Science and Technology, 8(1), 113-126.

Navia, Z. I., and Chikmawati, T. (2015). Durio tanjungpurensis (Malvaceae), a new species and its one new variety from West Kalimantan, Indonesia. Bangladesh Journal of Botany, 44(3), 429-436.

Nayaggy, M., and Putra, Z. A. (2019). Process simulation on fast pyrolysis of palm kernel shell for production of fuel. Indonesian Journal of Science and Technology, 4(1), 64-73.

N'diaye, A. D., Kankou, M. S. A., Hammouti, B., Nandiyanto, A. B. D., and Al Husaeni, D. F. (2022). A review of biomaterial as an adsorbent: From the bibliometric literature review, the definition of dyes and adsorbent, the adsorption phenomena and isotherm models, factors affecting the adsorption process, to the use of typha species waste as adsorbent. Communications in Science and Technology, 7(2), 140-153.

Özçimen, D., and Ersoy-Meriçboyu, A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew Energy, 35(6),1319–1324.

Pebrianti, M., and Salamah, F. (2021). Learning simple pyrolysis tools for turning plastic waste into fuel. Indonesian Journal of Multidiciplinary Research, 1(1), 99-102.

Popescu, C. M., Popescu, M. C., Singurel, G., Vasile, C., Argyropoulos, D. S., and Willfor, S. (2018). Spectral characterization of eucalyptus wood. Applied Spectroscopy, 61, 1–17.

Ragadhita, R., and Nandiyanto, A.B.D. (2023). Why 200°C is effective for creating carbon from organic waste (from thermal gravity (TG-DTA) perspective)?. ASEAN Journal for Science and Engineering in Materials, 2(1), 75-80.

Reza, M. S., Ahmed, A., Caesarendra, W., Abu Bakar, M. S., Shams, S., Saidur, R., Aslfattahi, N., and Azad, A. K. (2019). Acacia Holosericea: an invasive species for bio-char, bio-oil and biogas production. Bioengineering, 6(2), 33.

Reza, M. S., Islam, S. N., Afroze, S., Abu Bakar, M. S., Sukri, R. S., Rahman, S., and Azad, A. K. (2020b). Evaluation of the bioenergy potential of invasive Pennisetum purpureum through pyrolysis and thermogravimetric analysis. Energy, Ecology and Environment, 5, 118–133.

Reza, M. S.,·Afroze, S., Abu Bakar, M.S., Saidur, R., Aslfattahi, N., Taweekun, J., and Azad, A.K. (2020a). Biochar characterization of invasive Pennisetum purpureum grass: effect of pyrolysis temperature. Biochar, 2, 239–251.

Rondon, M. A., Lehmann, J., Ramirez, J., and Hurtado, M. (2007). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biology and Fertility of Soils, 43(6), 699–708.

Shaaban, A., Se, S. M., Dimin, M. F., Juoi, J. M., Husin, M. H. M., and Mitan, N. M. M. (2014). Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. Journal of Analytical and Applied Pyrolysis, 107, 31-39.

Shaaban, A., Se, S. M., Mitan, N. M. M., and Dimin, M. F. (2013). Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Engineering, 63, 365-371.

Subagyono, R. D. J., Qi, Y., Chaffee, A. L., Amirta, R., and Marshall, M. (2021). Pyrolysis-GC/MS analysis of fast growing wood macaranga species. Indonesian Journal of Science and Technology, 6(1), 141-158.

Sukamto., and Rahmat, A. (2022) Evaluation of FTIR, macro and micronutrients of compost from black soldier fly residual: in context of its use as fertilizer. ASEAN Journal of Science and Engineering, 3(1), 21-30.

Sukarman., Suryani., and Husnain. (2021). Land Suitability and Direction of Strategic Agricultural Commodities in East Kalimantan to Support the Development of the New Nation’s Capital of Republic of Indonesia. Jurnal Sumberdaya Lahan, 15(1), 1-12.

Sumarniasih, M. S., and Antara, M. (2021). Sustainable dryland management strategy in Buleleng Regency of Bali, Indonesia. Journal of Dryland Agriculture , 7(5), 88-95.

Thorat, P.V,. Warulkara, S., and Sathone, H. (2013). Thermofuel – “ Pyrolysis of waste plastic to produce Liquid Hydroocarbons”. Advances in Polymer Science and Technology: An International Journal, 3(1), 14-18

Traoré, M., Kaal, J., and Cortizas, A.M. (2015). Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochim Acta A Mol Biomol Spectrosc, 153, 63– 70

Yamato, M., Okimori, Y., Wibowo, I. F., Anshiori, S., and Ogawa, M. (2006). Effects of application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science and Plant Nutrition, 52, 489–495.

Yolanda, Y.D., and Nandiyanto, A.B.D. (2022). How to read and calculate diameter size from electron microscopy images. ASEAN Journal of Science and Engineering Education, 2(1), 11-36.

Zhou, Y., Gao, B., Zimmerman, A. R., Fang, F., Sun, Y., and Xinde, C. (2013). Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chemical Engineering Journal, 231, 512–518.

Zhu, K., Wang, X., Geng, M., Chen, D., Lin, H., and Zhang, H. (2019). Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar: Effect of biochar pyrolysis temperature, performance and mechanism. Chemical Engineering Journal, 374, 1253-1263.




DOI: https://doi.org/10.17509/ijost.v8i2.55193

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats