Artificial Neural Network Analysis of Sulfide Production in A Moroccan Sewerage Network
Abstract
Keywords
Full Text:
PDFReferences
Aguilar, L., Zha, S., Cheng, Z., Winnick, J., and Liu, M. (2004). A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels. Journal of Power Sources, 135(1-2), 17-24.
Boumehraz, M. A., Mellas, M., and Kriker, A. (2018). Study on durability of the concrete of sanitation network in ouargla algeria under the existence of sulphates attack. Indonesian Journal of Science and Technology, 3(1), 11-17.
Delgado, S., Alvarez, M., Rodriguez-Gomez, L. E., and Aguiar, E. (1999). H2S generation in a reclaimed urban wastewater pipe. Case study: Tenerife (Spain). Water Research, 33(2), 539-547.
EL Brahmi, A., and Abderafi, S. (2020). Hydrogen sulfide production assessment based on sewage physicochemical properties using artificial neural network. Materials Today: Proceedings, 27, 3028-3032.
Farobie, O., and Hasanah, N. (2016). Artificial neural network approach to predict biodiesel production in supercritical tert-butyl methyl ether. Indonesian Journal of Science and Technology, 1(1), 23-36.
Firer, D., Friedler, E., and Lahav, O. (2008). Control of sulfide in sewer systems by dosage of iron salts: Comparison between theoretical and experimental results, and practical implications. Science of The Total Environment, 392(1), 145-156.
Godini, H. R., Ghadrdan, M., Omidkhah, M. R., and Madaeni, S. S. (2011). Part ii: Prediction of the dialysis process performance using artificial neural network (ANN). Desalination, 265(1-3), 11-21.
Hamed, M. M., Khalafallah, M. G., and Hassanien, E. A. (2004). Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling and Software, 19(10), 919-928.
Hughes, M. N., Centelles, M. N., and Moore, K. P. (2009). Making and working with hydrogen sulfide: The chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: A review. Free Radical Biology and Medicine, 47(10), 1346-1353.
Karaci, A., Caglar, A., Aydinli, B., and Pekol, S. (2016). The pyrolysis process verification of hydrogen rich gas (H–rG) production by artificial neural network (ANN). International Journal of Hydrogen Energy, 41(8), 4570-4578.
Khayet, M., and Cojocaru, C. (2013). Artificial neural network model for desalination by sweeping gas membrane distillation. Desalination, 308, 102-110.
Kouki, S., M’hiri, F., Saidi, N., Belaïd, S., and Hassen, A. (2009). Performances of a constructed wetland treating domestic wastewaters during a macrophytes life cycle. Desalination, 246(1-3), 452-467.
Lambert, T. W., Goodwin, V. M., Stefani, D., and Strosher, L. (2006). Hydrogen sulfide (H2S) and sour gas effects on the eye. A historical perspective. Science of The Total Environment, 367(1), 1-22.
Nielsen, P. H., Raunkjær, K., and Hvitved-Jacobsen, T. (1998). Sulfide production and wastewater quality in pressure mains. Water Science and Technology, 37(1), 97-104.
Nourani, V., Mousavi, S., Sadikoglu, F., and Singh, V. P. (2017). Experimental and AI-based numerical modeling of contaminant transport in porous media. Journal of Contaminant Hydrology, 205, 78-95.
Nourani, V., Elkiran, G., and Abba, S. I. (2018). Wastewater treatment plant performance analysis using artificial intelligence–an ensemble approach. Water Science and Technology, 78(10), 2064-2076.
Olden, J. D., and Jackson, D. A. (2002). Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154(1-2), 135-150.
Parande, A. K., Ramsamy, P. L., Ethirajan, S., Rao, C. R. K., and Palanisamy, N. (2006). Deterioration of reinforced concrete in sewer environments. In Proceedings of the Institution of Civil Engineers-Municipal Engineer, 159(1), 11-20.
Pomeroy, R. (1959). Generation and control of sulfide in filled pipes. Sewage and Industrial Wastes, 31(9), 1082-1095.
Schmitz, J. E., Zemp, R. J., and Mendes, M. J. (2006). Artificial neural networks for the solution of the phase stability problem. Fluid Phase Equilibria, 245(1), 83-87.
Taleb-Ahmed, M., Taha, S., Chaabane, T., BenFarès, N., Brahimi, A., Maachi, R., and Dorange, G. (2005). Treatment of sulfide in tannery baths by nanofiltration. Desalination, 185(1-3), 269-274.
Tumer, A. E., and Edebali, S. (2015). An artificial neural network model for wastewater treatment plant of Konya. International Journal of Intelligent Systems and Applications in Engineering, 3(4), 131-135.
Vasseghian, Y., Zahedi, G., and Ahmadi, M. (2016). Oil extraction from pistacia khinjuk-experimental and prediction by computational intelligence models. Journal of Food Biosciences and Technology, 6(1), 1-12.
Vourch, M., Balannec, B., Chaufer, B., and Dorange, G. (2008). Treatment of dairy industry wastewater by reverse osmosis for water reuse. Desalination, 219(1-3), 190-202.
Zhang, Z., and Friedrich, K. (2003). Artificial neural networks applied to polymer composites: A review. Composites Science and Technology, 63(14), 2029-2044.
Zhang, L., De Schryver, P., De Gusseme, B., De Muynck, W., Boon, N., and Verstraete, W. (2008). Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review. Water Research, 42(1-2), 1-12.
DOI: https://doi.org/10.17509/ijost.v6i1.32322
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Indonesian Journal of Science and Technology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Science and Technology is published by UPI.
View My Stats