Assesments of Dental Caries Spatial Pattern in Ciamis District using Lisa Spatial Autocorrelation Analysis
Abstract
Keywords
Full Text:
PDFReferences
Al-Ahmadi, K., & Al-Zahrani, A. (2013).
spatial autocorrelation of cancer incidence in Saudi Arabia. Int. J. Environ. Res. Public Health, 10(12), 7207-7228.
Astari, A. J., Mohamed, A. A. A., & Ridwana, R. (2021). The Role of Geographic Information Science in Achieving Sustainable Development Goals (SDGs) During The Covid-19 Pandemic. Jurnal Geografi Gea, 21(2), 112-122.
Cristea, A. (2014). Assessment of recent
tectonic evolution and geomorphic response in SE Carpathians (Romania) using hypsometric analysis. GeoReview, 24, 76-88.
http://doi.org/10.4316/GEOREVIEW.2014.24.1.265.
Ciamis District Health Office (Dinkes
Kabupaten Ciamis. (2019). Profil
Kesehatan Kabupaten Ciamis Tahun 2019.
Ciamis District Health Office (Dinkes
Kabupaten Ciamis). (2020). Profil Kesehatan Kabupaten Ciamis Tahun 2020.
Dutta, I., Basu, T., & Das, A. (2021). Spatial
analysis of COVID-19 incidence and its determinants using spatial modeling: a study on India. Environmental Challenges, 4. 100096. http://doi.org/10.1016/j.envc.2021.100096.
Freyssenge, J., Renard, F., Khoury, C.,
Derex, L., & Termoz, A. (2020). Spatial distribution and differences of stroke occurrence in the Rhone department of France (STROKE 69 cohort). Scientific Reports.
Inarossy, N. (2019). Klasifikasi Wilayah
Risiko bencana kekeringan berbasis citra satelit Landsat 8 OLI dengan kombinasi metode metode Moran’s I Dan Getis Ord G* (Studi Kasus : Kabupaten Boyolali dan Klaten). Skripsi. Program Studi Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Satya Wacana Salatiga.
Jana, M., & Sar, N. (2016).Modeling of
hotspot detection using cluster outlier analysis and Getis-Ord Gi* statistic of educational development In Upper-Primary Level, India. Model. Earth Syst. Environ. 2, 60
Jesri, N., Saghafipour, A., Koohpaei, A.,
Farzinnia, B., Jooshin, M. K., Abolkheirian, S., & Sarvi M. (2021). Mapping and spatial pattern analysis of COVID-19 in Central Iran using the Local Indicators of Spatial Association (LISA). BMC Public Health, 21(1), 2227. http://doi.org/10.1186/s12889-021-12267-6.
Kim, S. M., & Choi, Y. (2017). Assessing
Statistically significant heavy-metal concentrations in abandoned mine areas via hot spot analysis of portable XRF Data. International Journal of Environmental Research And Public Health, 14(6), 654.
Kurniawan, A., & Sadali, M. (2020).
Pemanfaatan analisis spasial Hot Spot (Getis Ord Gi*) untuk pemetaan klaster industri di Pulau Jawa dengan memanfaatkan Sistem Informasi Geografi.
Laohasiriwong, W., Puttanapong, N., &
Singsalasang, A. (2018). Prevalence of hypertension in Thailand: hotspot clustering detected by spatial analysis. Geospatial Health, 13. http://doi.org/10.4081/gh.2018.608.
Lestari, A., Yozza, H., & Rahmi HG, I.
(2020). Pemodelan jumlah penduduk miskin di Provinsi Sumatera Barat menggunakan analisis regresi spasial. Jurnal Matematika Unand, 9(3).
Lutfi, A., Aidid, M. K., & Sudarmin. (2019).
Identifikasi autokorelasi spasial angka partisipasi sekolah di Provinsi Sulawesi Selatan menggunakan Indeks Moran. VARIANSI: Journal of Statistics and Its application on Teaching and Research, 1(2).
Maisaroh, S. (2020) Pengujian autokorelasi
spasial angka putus sekolah dengan Getis-Ord Gi*. Skripsi. Universitas Islam Negeri Maulana Malik Ibrahim,
Miheretu, B. (2020). Spatial patterns and
associated factors of HIV Seropositivity among adults in Ethiopia from EDHS 2016: a spatial and multilevel analysis. BMC Infectious Diseases, 20. http://doi.org/10.1186/s12879-020-05456-y.
Nuarsa, I. W. (2015). Pemetaan daerah
rawan kekeringan di Bali nusa tenggara dan hubungannya Dengan ENSO menggunakan aplikasi data penginderaan jauh. Jurnal Bumi Lestari, 15(1).
Pratiwi, M. C. Y., & Kuncoro M. (2016).
Analysis of growth poles and spatial
autocorrelation in Kalimantan: an empirical study of 55 districts, 2000–2012. Jurnal Ekonomi dan Pembangunan Indonesia, 16(2), 81-104.
Rotinsulu, A.J., & Sulistyo, W. (2021).
Spatial autocorrelation in the spread of SARS-CoV-2 (COVID-19) Among Villages (Study Case: The City of Tomohon). The IJICS (International Journal of Informatics and Computer Science), 5(2), 199-208.
Santoso, B. A. N., & Papilaya, F. S. (2019).
Perancangan model untuk analisa data calon mahasiswa dengan menggunakan Optimized Hot Spot Analysis dan Kernel Density Studi Kasus: FTI
UKSW. Prosiding Seminar Nasional GEOTIK 2019, 55-64.
Saputro, Sari, D. R., Widyaningsih, Kurdi, P., Arfawi, N., & Susanti. (2018). Proporsionalitas autokorelasi spasial dengan Indeks Global (Indeks Moran) dan Indeks Lokal (Local Indicator of Spatial Association (LISA)). Prosiding Konferensi Nasional Penelitian Matematika dan Pembelajarannya (KNPMP) III 2018.
Satiti, I., Fatmawati, D. W. A., & Lestari, Sri.
(2017). The indication prevalence of restoration treatments in patients who attended dental hospital University of Jember In 2015. Pustaka Kesehatan, 5(1), 128-132.
Soni, Z. Z. Z., Kusniati, R., & Rakhmawati,
A. K. (2020). Gambaran status kesehatan gigi dan mulut pada pasien Prolanis di Puskesmas Kedungmundu. Medica Arteriana, 2(1).
Wigati, P. R., Pangemanan, D. H. C., &
Parengkuan, W. G. (2016). Gambaran penggunaan bahan tumpatan di Rumah Sakit Gigi dan Mulut PSPDG Fakultas Kedokteran Unsrat Tahun 2015. PHARMACON Jurnal Ilmiah Farmasi – UnSrat, 5(2), 44-49.
Yunita, R., Anindita, N., Dwiatmoko, S., &
Hadnyanawati, H. (2020). Pemanfaatan Sistem Informasi Geografis untuk pemantauan karies di wilayah kerja Puskesmas Ambulu Kabupaten Jember. Stomatognatic - Jurnal Kedokteran Gigi, 17(1), 8-19.
Yenusi, Y. N., Setiawan, A., & Linawati, L.
(2020). Analisis spasial berdasarkan indeks Getis Ord Data laju inflasi tahunan di Pulau Sumatra. Jurnal Teknik Informatika dan Sistem Informasi, 6, 61-71.
Zen, M., Candiago, S., Schirpke, U., Egarter
Vigl, L. & Giupponi, C. (2019). Upscaling ecosystem service maps to administrative levels: beyond scale mismatches. Science of The Total Environment, 660, 1565-1575. http://doi.org/10.1016/j.scitotenv.2019.01.087.
DOI: https://doi.org/10.17509/gea.v23i1.50809
DOI (PDF): https://doi.org/10.17509/gea.v23i1.50809.g22943
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Jurnal Geografi Gea
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.