Assesments of Dental Caries Spatial Pattern in Ciamis District using Lisa Spatial Autocorrelation Analysis

Andri A Wibowo

Abstract


One method to study health patterns, including dental and oral health, is to use a spatial approach assisted by a Geographic Information System. Dental caries itself is one of the emerging dental and oral health problems. So this study aims to determine the pattern of grouping and the number of dental caries cases spatially. The grouping pattern or called spatial autocorrelation was analyzed using several spatial autocorrelation methods. The methods include analysis of Moran I, Getis-Ord Gi*, and LISA. While LISA stands for Local Indicator of Spatial Association. The research sample is 27 subdistricts within Ciamis District. The number of dental caries in 27 subdistricts ranges from 0 to 163 cases. From the results of the study, it is known that the Moran I index ranges from -0.625 to 0.763. It is known that 12 subdistricts have a Moran I value > 0. While the Getis-Ord Gi* index range is from -1,438 to 5,175 with 12 subdistricts having a Getis-Ord Gi* value > 0. Based on LISA analysis, it is known that there is a spatial autocorrelation and grouping with LISA classification goes into in the HH class covers 2 subdistricts. This means that in the 2 subdistricts the number of dental caries cases is known to be the highest, clustered, and has spatial autocorrelation compared to other sub-districts.

Keywords


dental caries, Getis-Ord Gi*, LISA, Moran I, teeth

Full Text:

PDF

References


Al-Ahmadi, K., & Al-Zahrani, A. (2013).

spatial autocorrelation of cancer incidence in Saudi Arabia. Int. J. Environ. Res. Public Health, 10(12), 7207-7228.

Astari, A. J., Mohamed, A. A. A., & Ridwana, R. (2021). The Role of Geographic Information Science in Achieving Sustainable Development Goals (SDGs) During The Covid-19 Pandemic. Jurnal Geografi Gea, 21(2), 112-122.

Cristea, A. (2014). Assessment of recent

tectonic evolution and geomorphic response in SE Carpathians (Romania) using hypsometric analysis. GeoReview, 24, 76-88.

http://doi.org/10.4316/GEOREVIEW.2014.24.1.265.

Ciamis District Health Office (Dinkes

Kabupaten Ciamis. (2019). Profil

Kesehatan Kabupaten Ciamis Tahun 2019.

Ciamis District Health Office (Dinkes

Kabupaten Ciamis). (2020). Profil Kesehatan Kabupaten Ciamis Tahun 2020.

Dutta, I., Basu, T., & Das, A. (2021). Spatial

analysis of COVID-19 incidence and its determinants using spatial modeling: a study on India. Environmental Challenges, 4. 100096. http://doi.org/10.1016/j.envc.2021.100096.

Freyssenge, J., Renard, F., Khoury, C.,

Derex, L., & Termoz, A. (2020). Spatial distribution and differences of stroke occurrence in the Rhone department of France (STROKE 69 cohort). Scientific Reports.

Inarossy, N. (2019). Klasifikasi Wilayah

Risiko bencana kekeringan berbasis citra satelit Landsat 8 OLI dengan kombinasi metode metode Moran’s I Dan Getis Ord G* (Studi Kasus : Kabupaten Boyolali dan Klaten). Skripsi. Program Studi Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Satya Wacana Salatiga.

Jana, M., & Sar, N. (2016).Modeling of

hotspot detection using cluster outlier analysis and Getis-Ord Gi* statistic of educational development In Upper-Primary Level, India. Model. Earth Syst. Environ. 2, 60

Jesri, N., Saghafipour, A., Koohpaei, A.,

Farzinnia, B., Jooshin, M. K., Abolkheirian, S., & Sarvi M. (2021). Mapping and spatial pattern analysis of COVID-19 in Central Iran using the Local Indicators of Spatial Association (LISA). BMC Public Health, 21(1), 2227. http://doi.org/10.1186/s12889-021-12267-6.

Kim, S. M., & Choi, Y. (2017). Assessing

Statistically significant heavy-metal concentrations in abandoned mine areas via hot spot analysis of portable XRF Data. International Journal of Environmental Research And Public Health, 14(6), 654.

Kurniawan, A., & Sadali, M. (2020).

Pemanfaatan analisis spasial Hot Spot (Getis Ord Gi*) untuk pemetaan klaster industri di Pulau Jawa dengan memanfaatkan Sistem Informasi Geografi.

Laohasiriwong, W., Puttanapong, N., &

Singsalasang, A. (2018). Prevalence of hypertension in Thailand: hotspot clustering detected by spatial analysis. Geospatial Health, 13. http://doi.org/10.4081/gh.2018.608.

Lestari, A., Yozza, H., & Rahmi HG, I.

(2020). Pemodelan jumlah penduduk miskin di Provinsi Sumatera Barat menggunakan analisis regresi spasial. Jurnal Matematika Unand, 9(3).

Lutfi, A., Aidid, M. K., & Sudarmin. (2019).

Identifikasi autokorelasi spasial angka partisipasi sekolah di Provinsi Sulawesi Selatan menggunakan Indeks Moran. VARIANSI: Journal of Statistics and Its application on Teaching and Research, 1(2).

Maisaroh, S. (2020) Pengujian autokorelasi

spasial angka putus sekolah dengan Getis-Ord Gi*. Skripsi. Universitas Islam Negeri Maulana Malik Ibrahim,

Miheretu, B. (2020). Spatial patterns and

associated factors of HIV Seropositivity among adults in Ethiopia from EDHS 2016: a spatial and multilevel analysis. BMC Infectious Diseases, 20. http://doi.org/10.1186/s12879-020-05456-y.

Nuarsa, I. W. (2015). Pemetaan daerah

rawan kekeringan di Bali nusa tenggara dan hubungannya Dengan ENSO menggunakan aplikasi data penginderaan jauh. Jurnal Bumi Lestari, 15(1).

Pratiwi, M. C. Y., & Kuncoro M. (2016).

Analysis of growth poles and spatial

autocorrelation in Kalimantan: an empirical study of 55 districts, 2000–2012. Jurnal Ekonomi dan Pembangunan Indonesia, 16(2), 81-104.

Rotinsulu, A.J., & Sulistyo, W. (2021).

Spatial autocorrelation in the spread of SARS-CoV-2 (COVID-19) Among Villages (Study Case: The City of Tomohon). The IJICS (International Journal of Informatics and Computer Science), 5(2), 199-208.

Santoso, B. A. N., & Papilaya, F. S. (2019).

Perancangan model untuk analisa data calon mahasiswa dengan menggunakan Optimized Hot Spot Analysis dan Kernel Density Studi Kasus: FTI

UKSW. Prosiding Seminar Nasional GEOTIK 2019, 55-64.

Saputro, Sari, D. R., Widyaningsih, Kurdi, P., Arfawi, N., & Susanti. (2018). Proporsionalitas autokorelasi spasial dengan Indeks Global (Indeks Moran) dan Indeks Lokal (Local Indicator of Spatial Association (LISA)). Prosiding Konferensi Nasional Penelitian Matematika dan Pembelajarannya (KNPMP) III 2018.

Satiti, I., Fatmawati, D. W. A., & Lestari, Sri.

(2017). The indication prevalence of restoration treatments in patients who attended dental hospital University of Jember In 2015. Pustaka Kesehatan, 5(1), 128-132.

Soni, Z. Z. Z., Kusniati, R., & Rakhmawati,

A. K. (2020). Gambaran status kesehatan gigi dan mulut pada pasien Prolanis di Puskesmas Kedungmundu. Medica Arteriana, 2(1).

Wigati, P. R., Pangemanan, D. H. C., &

Parengkuan, W. G. (2016). Gambaran penggunaan bahan tumpatan di Rumah Sakit Gigi dan Mulut PSPDG Fakultas Kedokteran Unsrat Tahun 2015. PHARMACON Jurnal Ilmiah Farmasi – UnSrat, 5(2), 44-49.

Yunita, R., Anindita, N., Dwiatmoko, S., &

Hadnyanawati, H. (2020). Pemanfaatan Sistem Informasi Geografis untuk pemantauan karies di wilayah kerja Puskesmas Ambulu Kabupaten Jember. Stomatognatic - Jurnal Kedokteran Gigi, 17(1), 8-19.

Yenusi, Y. N., Setiawan, A., & Linawati, L.

(2020). Analisis spasial berdasarkan indeks Getis Ord Data laju inflasi tahunan di Pulau Sumatra. Jurnal Teknik Informatika dan Sistem Informasi, 6, 61-71.

Zen, M., Candiago, S., Schirpke, U., Egarter

Vigl, L. & Giupponi, C. (2019). Upscaling ecosystem service maps to administrative levels: beyond scale mismatches. Science of The Total Environment, 660, 1565-1575. http://doi.org/10.1016/j.scitotenv.2019.01.087.




DOI: https://doi.org/10.17509/gea.v23i1.50809

DOI (PDF): https://doi.org/10.17509/gea.v23i1.50809.g22943

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Geografi Gea

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.