SKENARIO UNCERTAINTY JUMLAH PENAKAR CURAH HUJAN DI KOTA MAKASSAR
Abstract
Ketersediaan data curah hujan yang akurat sangat penting dalam berbagai bidang. Kebutuhan akan penakar curah hujan akan makin meningkat terutama jika terjadi peningkatan curah hujan akibat hujan ekstrim, seperti banjir yang terjadi di Kota Makassar tahun 2019. Penelitian ini bertujuan membuat skenario jumlah penakar hujan yang optimal di Kota Makassar. Penentuan jumlah rain gauge yang optimal menggunakan coefficient of variation dan derajat kesalahan berdasarkan data curah hujan pada stasiun yang tersedia. Hasil skenario beberapa tingkat kesalahan menunjukkan adanya perubahan jumlah optimal rain gauge terhadap skenario kesalahan. Semakin akurat data yang diinginkan, maka jumlah rain gauge harus bertambah banyak, durasi akumilasi yang lama memerlukan jumlah optimal rain gauge yang lebih banyak. Diperlukan 10 lokasi stasiun hujan untuk Kota Makassar dengan derajat kesalahan 5% dan 5 lokasi rain gauge untuk tingkat kesalahan 10%. Berdasarkan kombinasi antar rain gauge, disaratkan penambahan rain gauge antara Balai IV atau Biring Romang dengan Sudiang, demikian juga tambahan juga diperlukan antara Paotere dan Barombong
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Ahuja, P. R. (1960) Planning of precipitation network for water resources development in India. WMO flood control series No 15, 106–112.
Adhikary, S. K., Yilmaz, A. G. dan Muttil, N. (2015) Optimal design of rain gauge network in the Middle Yarra River catchment, Australia, Hydrol. Process, 29, 2582–2599.
Al-Abadi, A. M. dan Al-Aboodi, A. H. D. (2014) Optimum Rain-Gauges Network Design of Some Cities in Iraq, Journal of Babylon University/Engineering Sciences, 22(4), 946-958.
Amini, M., Afyuni, M, Khademi, H, Abbaspour, K. C., Schulin, R. (2004) Mapping risk of cadmium and lead contamination to human health in soils of Central Iran, Science of the Total Environment, 347: 64– 77.
Amorim, A. M. T., Goncalves, A. B., Nunes, L. M. dan Sousa, A. J. (2012) Optimizing the location of weather monitoring stations using estimation uncertainty, International Journal of Climatology, 32, 941-952.
Brandeau, M. L. dan Chiu, S.S. (1989) An overview of representative problems in location research. Management Science 35, 645–74.
Cameron, K, Hunter P. (2002) Using spatial models and kriging techniques to optimize long‐term ground‐water monitoring networks: a case study, Environmetrics, 13, 629– 656.
Church, R. L. (2002) Geographical information systems and location science, Computers and Operations Research, 29(6): 541– 562.
Church, R. L. dan Murray, A. T. (2009) Business Site Selection, Location Analysis and GIS, Wiley: New York.
Ciach, G. J. (2003) Local Random Errors in Tipping-Bucket Rain gauge Measurements, Journal of Atmospheric and Oceanic Technology, 20, 752-759.
Ciach, G. J., Krajewski, W. F. dan Villarini, G. (2007) Product-Error-Driven Uncertainty Model for Probabilistic Quantitative Precipitation Estimation with NEXRAD Data, Journal of Hydrology, 8, 1325–1347.
Daskin, M. S. (1995) Network and Discrete Location—Models, Algorithms and Applications, Wiley: New York.
Ganguli, M. K., Rangarajan, R. dan Panchang, G. M. (1951) Accuracy of mean rainfall estimates – Data of Damodar catchment, Journal of Irrigation and Power, 8.
Giarno, Zadrach L. D. dan Mustofa, M. A (2012) Kajian awal musim hujan and awal musim kemarau di Indonesia, Jurnal Meteorologi and Geofisika, 1, 1–8
Giarno Hadi, M. P., Suprayogi, S. dan Murti, S. H. (2018) Distribution of Accuracy of TRMM Daily Rainfall in Makassar Strait, Forum Geografi, 32, 38-52
Hamacher, H. dan Nickel, S. (1998) Classification of location models, Location Science, 6, 229– 242.
Hu, Q.F., Yang, D.W., Wang, Y.T. dan Yang, H.B. (2013) Accuracy and Spatio-Temporal Variation of High Resolution Satellite Rainfall Estimate over the Ganjiang River Basin, China Technology and Science, 56, 853–865.
Laurini, R. dan Thompson, D. (1992) Fundamentals of Spatial Information Systems, Academic Press, London.
Li, Y. dan Hilton, A. B. (2005) Reducing spatial sampling in long‐term groundwater monitoring networks using ant colony optimization, International Journal of Computational Intelligence Research, 1(1), 19– 28.
Ngene, B. U., Agunwamba, J. C., Nwachukwu, B. A. dan Okoro, B. C. (2015) The Challenges to Nigerian Raingauge Network Improvement, Res. J. Environ. Earth Sci., 7(4), 68-74.
Pardo‐Igúzquiza E. (1998) Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing, Journal of Hidrology, 210, 206– 220.
Periago, M. C., Lana, X., Fernández Mills, G. dan Serra, C. (1997) Optimization of the pluviometric network of Catalonia (North‐East Spain) for climatological studies, International Journal of Climatology, 18, 183– 198.
Prakash, M. R. dan Singh, V. S. (2000) Network design for groundwater monitoring—a case study, Environmental Geology, 39, 628– 632.
Rycroft, H.B. (1949) Random Sampling of rainfall, J. South African Forestry Assoc. 18.
Xie, P.P. dan Arkin, P.A. (1997) Analyses of Global Monthly Precipitation Using Gauge Observations, Satellite Estimates, and Numerical Model Predictions, Journal of Climatology, 9, 840–858.
Yeh, M. S., Lin, Y. P. dan Chang, L. C. (2006) Designing an optimal multivariate geostatistical groundwater quality monitoring network using factorial kriging and genetic algorithms, Environmental Geology, 50, 101– 121.
WMO (1994) Guide to Hydrological Practices: Data Acquisition and Processing, Analysis, Forecasting, and Other Apllications, WMO-No.168.
WMO (2006) Guide to Meteorological Instruments and Methods of Observation, WMO-No.8.
DOI: https://doi.org/10.17509/gea.v20i2.24051
DOI (PDF (Bahasa Indonesia)): https://doi.org/10.17509/gea.v20i2.24051.g13237
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Giarno Arno, Muflihah Muflihah, Mujahidin Mujahidin
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.