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A B S T R A C T   A R T I C L E   I N F O 

The selection of an interpolation method that complies with 
the availability of data, to map the grade distribution of 
mineral commodities, is an important issue in every stage of 
exploration in the mining industry. A reliable method can 
produce accurate predictions of the grade distribution of 
deposits so that it can be used to properly evaluate the 
economic potential of a mineral deposit. The objective of this 
research was to compare the performance of four 
deterministic interpolation methods, including Global 
Polynomial Interpolation (GPI), Radial Basis Function (RBF), 
Inverse Distance Weighting (IDW), and Local Polynomial 
Interpolation (LPI), to map the distribution of Ni, Fe, and 
MgO. The evaluation of the interpolation results was carried 
out using the cross-validation technique through the 
statistical parameters Mean Error (ME), Root Mean Square 
Error (RMSE), and Mean Relative Error (MRE). The results of 
the comparison show that the performance of the RBF 
method is the most accurate as indicated by the lowest RMSE 
and MRE values, or the ME value that is closest to zero. It can 
be concluded that the RBF interpolation technique is the best 
method for predicting the spatial distribution of Ni, Fe, and 
MgO grades in this study area 
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1. INTRODUCTION 

Along with the rapid development of the manufacture of batteries for electric vehicles and the 
increasing demand for stainless steel, this has affected the development of the world's nickel mining 
industry (Konig U, 2021). Approximately 60% to 70% of the global nickel resources come from 
laterite deposits and the remainder comes from nickel sulfide (Butt. C.R.M and Cuzel. D, 2013, 
Garvin. M.M, and Simon. M.J. 2014, Guo. Z et al, 2017). However, currently around 40% of world 
nickel production comes from laterite deposits and 60% comes from nickel sulfide (Konig U, 2021). 
It is estimated that in 2025 the world's nickel demand for battery manufacture will increase by 
approximately 15%, and this additional supply of nickel will be mined mainly from lateritic deposits 
(Konig U, 2021). On the other hand the mining activities will cause change the landscape such as 
topography, vegetation cover, hydrological patterns, and damage to soil structures (Isdianti, A.R et 
al, 2022). Currently nickel laterite is more attractive not only because it has a large amount of 
resources globally, but also because of the continuing increase in the cost of mining nickel sulphide 
and the environmental pollution caused by its production process (Zhang et al, 2019, Yan N et al, 
2015).  

Nickel laterite is formed from the weathering of ultramafic rocks in humid tropical climates. The 
type of rock and climate during the lateritization process will affect the type of mineralogy and grade 
of ore in nickel laterite deposits (Konig U, 2021). Nickel is hosted on minerals such as oxides, clay 
silicates, and hydrous Mg silicates (Butt C R M and Cluzel D, 2013) . In general, the profile of nickel 
laterite deposits from bottom to top is: bedrock consisting of ultramafic or partially weathered 
ultramafic rocks, saprolite or silicate zone characterized by Mg-silicate minerals such as serpentine 
and garnierite, and limonite or oxide zones with the dominant composition of iron oxyhydroxides, 
especially mineral goethite, hematite, and maghemite (Golightly J, 1981, Elias M, 2002). 
Approximately 85% of the world's nickel laterite resources are located in Cuba, New Caledonia, 
Indonesia, Philippines, Vietnam and Brazil (Butt C R M and Cluzel D., 2013., Nkrumah P.N et al, 2016). 
Indonesia is one of the world's largest suppliers of lateritic nickel ore where its resources are found 
in the eastern part of Indonesia, especially in Sulawesi and the Maluku islands (Farrokhpay S et al, 
2019, Zhou S W et al, 2017). 

The main issue in assessing mineral resources is how to predict the spatial distribution of the 
grades of element commodities in mineral deposits (Qu H et al, 2021, Daya, 2012, Li X L et al, 2010). 
Therefore, the selection of an appropriate interpolation method according to the amount and 
distribution of available data is important. Reliable prediction of grade distribution and resource 
estimation is used to evaluate the economic potential of a mineral deposit (Qu H et al, 2021). 
Accurate prediction results will affect the potential number of reserves and the economic potential 
of resources in an area (Zhang J.D,et al, 2002). The spatial interpolation method is a technique for 
estimating locations where there is no data by using existing observation data around the estimated 
target point (Losser et al, 2014, Chai. H et al, 2011). Spatial interpolation methods that are known 
at this time include geostatistical methods, consisting of ordinary kriging, simple kriging, universal 
kriging, Co kriging, indicator kriging and others, and deterministic interpolation methods consisting 
of global polynomial interpolation (GPI), Local polynomial interpolation (LPI), inverse distance 
weighted interpolation (IDW), and radial basis function (RBF) (Yong X et al, 2016). Geostatistical 
methods have been widely accepted for predicting spatial distribution and estimating resources in 
the mining industry. In its calculations, this method is very dependent on the correlation of spatial 
data reflected by the variogram model. However, in reality it is not always possible to construct an 
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experimental variogram model because it requires quite a lot of data (Santos T.C and Yamamoto 
J.K., 2019). In the case of insufficient data available to construct an experimental variogram, there 
are other alternative methods that can be used to replace the geostatistical method, generally using 
a deterministic method (Yamamoto, 2002). Some important points in this study is that GIS is used 
for mapping because it can integrate and comparisons various data and information that resulting 
new insight  

The objective of this research was to evaluate the performance of interpolation methods, 
deterministic global polynomial interpolation (GPI), Local polynomial interpolation (LPI), inverse 
distance weighted interpolation (IDW), and radial basis function (RBF), to determine the best 
deterministic method in mapping the spatial distribution of grades of Ni, Fe and Mg in the study 
area (Astari, A. J., et al, 2021). 

2. RESEARCH METHOD 

The research was undertaken on nickel laterite deposits of the limonite layer in the North 
Morowali district, Central Sulawesi Province (Figure 1.a). Geologically the research area is located 
in the ophiolite belt of Eastern Sulawesi (Fu et al, 2018). This ophiolite belt is part of the Circum 
Pacific phanerozoic ophiolite complex which was formed during the Cretaceous to Miocene (Hall 
and Wilson, 2000). The ophiolite belt consists of ultramafic rocks, mainly harzburgite, lherzolite, and 
peridotite (Fu et al, 2018, Simandjuntak et al, 1997). In the research area, most of the ultramafic 
rocks have been regionally metamorphosed to a moderate to high degree and the rocks are 
petrographically described as serpentinite (Fu et al, 2014). Intensive weathering of these ultramafic 
rocks can form one or more layers containing of nickel (Ni), iron (Fe), magnesium (Mg), cobalt (Co), 
and rarely scandium (Sc) (Butt and Cluzel, 2013, Brand et al, 1998).   

 
(a)      (b) 

Figure 1 (a) Regional Geology of Sulawesi (Fu et al, 2018), and (b) Location of the research area 

This study uses data from exploration drilling in an area of ± (650 X 400) m². Drilling is carried out 
in a grid pattern with an average distance between drill points of 50m. A total of 62 drill holes 
(Figure.1.b) with limonite layer thickness ranging from 1m to 14m. Sampling for geochemical 
analysis was carried out at each drill hole at 1m intervals. Coordinates of the drill point locations 
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were determined using a global positioning system (GPS), while the analysis of Ni, Fe, and MgO were 
carried out using the XRF method. 

Figure 2 is flowchart of data processing using the interpolation techniques that were applied to 
estimate the spatial distribution of Ni, Fe, and MgO grades, and evaluate the performance of each 
interpolation technique. It begins with visually analyzing the data by screening data values to 
identify inaccurate coordinates of sample locations, and illogical values of Ni, Fe and MgO analyzing 
results. The data used in processing is the composite value obtained from the results of calculating 
the weighted average value of each sample in each drill hole. Description of the data values and 
their distribution is presented in a summary of basic statistics, including minimum, maximum, 
average, standard deviation, coefficient of variance (CV), skewness, and amount of data. This 
composite database is then used to estimate locations where there is no measurement data, using 
inverse distance weighting (IDW), radial basis function (RBF), global polynomial interpolation (GPI), 
and local polynomial interpolation (LPI) interpolation techniques. The performance of each 
interpolation technique is then evaluated using the statistical parameters mean error (ME), root 
mean square error (RMSE), and mean relative error (MRE). The interpolation technique with the 
closest ME value to zero, and the lowest RMSE, or the lowest MRE value is the most optimum 
method (Jiang et al, 2022., Adhikary. P. P, and Dash. Ch. J., 2017). 

 
Figure 2. Model for prediction of Ni, Fe and MgO. IDW, inverse distance weighting; RBF, radial 

basis function; CRS, completely regularized spline; SWT, spline with tension; M, multiquadric; IM, 
inverse multiquadric; TPS, thin plate spline; GPI, global polynomial interpolation; LPI, local 

polynomial interpolation; ME, mean error; RMSE, root mean square error; MRE, mean relative 
error. 

Spatial Interpolation Methods 
There are two types of interpolation methods, namely global and local methods. In its 

interpolation the global method uses all data, observations in an area, are used for the estimation 
process and show trends in general, while the local method only uses data that is located around 
the estimated point (Li. J and Heap. A.D, 2008). In this research used global and local interpolation 
method, to generate spatial distribution maps of Ni, Fe, and MgO using a variety of deterministic 
interpolation techniques including; inverse distance weighting (IDW), radial basis function (RBF), 
global polynomial interpolation (GPI), and local polynomial interpolation (LPI). 
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a). Inverse Distance Weighting (IDW) 
IDW is classified as local interpolator, and exact method which generate the same prediction as 

the observed value at the sample location point (Li and Heap, 2008). Even though other, more 
sophisticated interpolation methods have been developed, the IDW method is still widely used for 
spatial interpolation, because this method is simple, quick and easy to apply with satisfactory 
interpolation results (Cheng et al, 2017). This has been confirmed over the years in various research 
works from various disciplines (Gilewski, 2021). In its estimations, IDW gives values at an unsampled 
point based on the weighted average of the surrounding data values within the specified radius. The 
weight used in interpolation is a value that is inversely proportional to the distance between the 
unsampled point and the data location (Handoko. M, et.al, 2021). IDW will give less weight to data 
that is far from the unsampled location, and give greater weight to data that is located closer (Chen 
et al, 2017, Bhunia et al, 2016, Johnston et al, 2001). The IDW interpolation model is formulated as 
below: 

 (1) 
 

and, 
 

 (2) 
 

where  :estimated value at an unsampled location,  : sample wight on site I, : distance 

between location i and unsampled location, :power parameters, : sample value on site i. 

b). Radial Basis Function (RBF) 
RBF is a series of exact, local interpolation techniques consisting of thin plate spline (TPS), spline 

with tension (SWT), multiquadric function (M), inverse multiquadric function (IM) and completely 
regularized spline (CRS). It can be imagined that the RBF is like a rubber sheet that is placed and 
fitted over the measured data points, by minimizing the total curvature of the rubber sheet passing 
through each data point (Bhunia et al, 2016). RBF interpolation is not effective if there is a dramatic 
change in data values over a short distance (Cheng and Xie, 2009). This method uses basic equations 
that depend on the distance between the estimated points and the location of the data points 
(Aguilar et al, 2005). If Z is the predicted value, then RBF is can be formulated as below (Adhikary. 
P. P, and Dash. Ch. J., 2017): 

    Z = ∑n i=1λiφ(|x − xi |) + p(x) (3) 
 

where p(x): function of the polynomial, λi: weight, |x-xi|: represent the Euclidean distance between 
x and the center point xi, and ϕ: radial basis function 

c). Global Polynomial Interpolation (GPI) 
GPI is a deterministic method, inexact, and global interpolation, which in its predictions uses 

mathematical functions, first, second, third degree, or higher degree (Cooper et al, 2015). This 
method is suitable for applying data values with gradual variations, but is prone to outliers, 
especially at the edges of the study area (Johnston et al, 2001). In its prediction, GPI uses the entire 
data population in the area of interest, and its interpolation produces gradual surface variations 
(Wang, 2014). In applying this method, it is necessary to pay attention to the degree of the 
polynomial used to adjust the surface of the data values (Antal et al, 2021). The first order GPI 
interpolation technique is calculated based on the following equation (Tanjung et al, 2020): 
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Zxy = b0 + b1x + b2y (4) 
 

In this study, testing was carried out using the level of order polynomial values 1 to order 5. 

d). Local Polynomial Interpolation (LPI) 
LPI is a moderately quick deterministic method, inexact and local interpolation. When compared 

to GPI, this method is a more flexible interpolator (Johnston et al, 2001). In its prediction, it is not 
like GPI which uses all population data, but uses data around the predicted location which is 
specifically determined by the operator (Wang et al, 2014). In its estimation, LPI uses several 
parameters including the maximum and minimum amount of surrounding data, environment type, 
sector, and kernel type, such as for example; exponential, gaussian, quartic and constant (Johnston 
et al, 2001). LPI prediction results are more accurate when used in smaller areas, locations between 
data have the same distance and are normally distributed (Luo et al, 2008). In its calculations, LPI 
uses polynomial equations for all types of kernels. The weight of the prediction (𝑊𝑖) can be 
calculated by the following equation (Antal et al, 2021): 

𝑊𝑖 = (1 −
𝑑𝑖

𝑅
) 𝑝   (5) 

 
Where 𝑑𝑖 is the distance between the data and the predicted location, R represents the area where 
the data is taken in the estimation, and 𝑝 is a sequence of polynomial functions determined by the 
operator. 

e). Performance Comparison of The Interpolation Method 
To evaluate the performance of the IDW, RBF, GPI, and LPI interpolation methods, cross 

validation techniques are used. This method has been widely used in various fields of science (Jiang 
et al, 2022), including in the fields of earth sciences and mining sector. This technique is also known 
as “leave-one-out cross validation”, and this method is part of the Monte Carlo group (Berrar, 2018). 
The CV procedure is carried out in two stages: First, temporarily removing one of the observation 
data from the data set, then at the point where the observation value has been deleted it is 
predicted using other observational data. Second, the predicted value at that point is compared 
with the actual observed value. This procedure is carried out repeatedly and sequentially on all 
observational data in the data set (Antal et al, 2021). The results of the comparison allow for 

discrepancies between predicted data (�̂�(𝑥𝑖)) and observed data (𝑍(𝑥𝑖)), which is expressed in 
experimental error (E). 

𝐸 = �̂�(𝑥𝑖) − 𝑍(𝑥𝑖)    (6) 
 

Evaluation of the prediction results from the interpolation method can be determined by the 
value of the difference between the observed data and the value of the interpolation results (Antal 
et al, 2021). In this study, to test the performance of each interpolation method, the indicators mean 
error (ME), root mean square error (RMSE), and mean relative error (MRE) are used. The ME 
indicator shows the average difference between the predicted value and the observed value. The 
ME value indicates the bias of the prediction, if the interpolation is accurate or unbiased, the ME 
value is equal to zero (Johnston et al, 2001). The ME equation model is expressed as follows: 

 (7) 
 

Meanwhile, the RMSE value indicates the accuracy of the prediction results, where the predicted 
results are stated to be more accurate if they have a smaller RMSE value. The RMSE value is 
calculated according to the following equation (Arkoc, 2021., Cheng et al, 2017): 
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𝑅𝑀𝑆𝐸 = [
1

𝑛
∑ ⬚𝑛

𝑖=1 (�̂�(𝑥𝑖) − 𝑍(𝑥𝑖))
2

]
0.5

  (8) 

 
The MRE indicator is used if the ME and RMSE values show a discrepancy, where the prediction 
results are stated to be more accurate if the MRE value is smaller (Adhikary. P. P, and Dash. Ch. J., 
2017). The MRE model is expressed as follows: 

𝑀𝑅𝐸 =  
𝑅𝑀𝑆𝐸

𝛿
  (9) 

where : estimated value, : measurement value,  : amoun of predictive data, 
and δ is the difference between the maximum and minimum values of the observation data. 

3. RESULTS AND DISCUSSION 
a) Descriptive Statistical Analysis 

The data base used in this research is composite data of Ni, Fe, and MgO from each drill hole in 
the limonite layer. A description of the statistical analysis of the composite data is presented in Table 
1. The statistical analysis showed that the standard deviation values were lower for Ni (0.21) and 
higher for MgO (4.15) and Fe (9.29). In addition, coefficient of variance (CV) shows a low value for 
Ni (0.19) and Fe (0.28) that indicate low data variability (Yasrebi et al, 2009), but showed high 
variability for MgO (0.71). Likewise, the coefficient of skewness shows varying values of Fe (-0.5), Ni 
(0.66), and MgO (1.08). To fit the data into a normal distribution, a logarithmic transformation needs 
to be considered for MgO with a coefficient of skewness > 1 (Webster and Oliver, 2001), and CV > 
0.5 (Annels A.E., 1991). 

 
Table 1: Description of the statistical analysis of Ni, Fe and MgO grades 

Element Min Max Mean Std dev CV Skew N 

Ni 0.7 1.85 1.12 0.21 0.19 0.66 62 

Fe 

MgO 

11.22 

0.30 

33.01 

19.01 

33.01 

5.81 

9.29 

4.15 

0.28 

0.71 

-0.50 

1.08 

62 

62 

 
Min: Minimum value, Max: Maximum value, Std dev: Standard deviation, CV: Coefficient of 
variation, Skew: Skewness, N: Amount of composite data.

b) Spatial Interpolation 
Estimation of Ni, Fe and MgO with the IDW method uses composite data with equations (1) and 

(2). In the calculations, the power value is manipulated from one to five and the data included in 
the calculation is a minimum of 3 and a maximum of 15. For the prediction using the RBF method, 
consisting of CRS, SWT, M, IM, and TPS, using equation (3) with the number of data used a minimum 
of 3 and a maximum of 15. While the estimation using the GPI and LPI methods uses the order of 1 
to 5. Calculating the GPI uses the entire data population, as many as 62 data, with using equation 
(4). In the LPI method, the amount of data used in the calculation is a maximum of 15 and a minimum 
of 3 data with using equation (6). 

c) Performance Analysis 
Performance analysis of the interpolation methods for Ni 

The performance results of the methods used in interpolating Ni grades were obtained from the 
cross-validation process, the comparison of the errors of the interpolation is presented in table 2. 
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The mean error (ME) values close to 0 indicate a small bias (Arkoc, 2021., Cheng et al, 2017), and 
smaller values of root mean square error (RMSE) and mean relative error (MRE) indicates a more 
accurate prediction (Adhikary. P. P, and Dash. Ch. J., 2017). The cross-validation results in table 2 
show that the interpolation results of the IDW method with the lowest RMSE and MRE values were 
obtained in the IDW power 1 technique (RMSE=0.2286479, MRE=0.1983930). This shows that the 
prediction results of the IDW power 1 method are more accurate than those of IDW power 2, power 
3, power 4, and IDW power 5. For the RBF method the best interpolation result is the IM technique 
with a value of RMSE=0.2181237, and MRE=0.1892613 as the lowest value when compared with 
the CRS, SWT, M, and TPS techniques. For the GPI and LPI methods, the results of interpolation with 
the lowest RMSE and MRE values occurred at 1st order GPI with RMSE=0.2263752 and 
MRE=0.1964210, and 1st order LPI with RMSE=0.2292902, and MRE=0.1989503. 

From the four interpolation methods, it is found that the order of the RMSE values is as follows: 
RBF (IM) < GPI (Order 1) < IDW power1 < LPI (order 1). Likewise, the MRE values show the same 
sequence of values, namely: RBF (IM) < GPI (order 1) < IDW power1 < LPI (order 1). This shows that 
the prediction results for the value of Ni using the RBF (IM) interpolation method are better than 
the GPI, IDW, and LPI methods. 

Table 2: Comparison of the errors of the interpolation methods to estimate Ni grade 
Interpolation Method Element ME RMSE MRE 

IDW 

Power-1  

Ni 

-0.0070855 0.2286479 0.1983930 

Power-2 -0.0029475 0.2421897 0.2101429 

Power-3 0.0003916 0.2545743 0.2208888 

Power-4 0.0023933 0.2632794 0.2284420 

Power-5 0.0034524 0.2686419 0.2330949 

      

RBF 

Compl Regularized S  

Ni 

-0.0043061 0.2493090 0.2163202 

Spline with Tension -0.0048804 0.2439072 0.2116332 

Multiquadric -0.0033472 0.2978907 0.2584735 

Inverse Multiquadric -0.0108120 0.2181237 0.1892613 

Thin Plate Spline -0.0060555 0.3583383 0.3109226 

      

 

GPI 

Orde 1  

Ni 

-0.0011512 0.2263752 0.1964210 

Orde 2 -0.0011224 0.2361267 0.2048822 

Orde 3 -0.0043199 0.2619525 0.2272907 

Orde 4 -0.0085367 0.3175354 0.2755181 

Orde 5 -0.0186640 0.3517350 0.3051931 

      

 

LPI 

 

Orde 1  

Ni 

0.0065858 0.2292902 0.1989503 

Orde 2 -0.0022503 0.2481513 0.2153156 

Orde 3 -0.0073209 0.2855512 0.2477668 

Orde 4 -0.0132080 0.3301447 0.2864596 

Orde 5 -0.0174260 0.3884991 0.3370925 

Visualization of the spatial distribution of the best predicted results for Ni grades in each of the 
IDW, RBF, GPI, and LPI interpolation methods are presented in Figure 3. The four map images show 
different distribution patterns of Ni grade variations, where the IDW method interpolation results 
show the Ni grade distribution pattern is the most varied (Figure 3a), but in general the interpolation 
results from the four methods show that most of the study area is occupied by laterite deposits with 
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a content of 1-1.2% Ni (green color). In fact, the results of the interpolation of the GPI method show 
that the entire study area is occupied by a distribution of Ni grades in the range of 1-1.2%. The best 
interpolated map using the RBF method (Figure 3b) shows the distribution of laterite with a range 
of 1-1.2% Ni occupying an area of ± 95% and a range of 1.2-1.5% Ni occupying an area of ± 5% in the 
northeastern part of the study area. 

 
(a) IDW power 1 

 
(b) RBF-IM 

 
(c) GPI orde 1 

 
(d) LPI orde 1 

 

Figure 3: Map of the distribution of Ni grade with the best interpolation results from the IDW, RBF, 
GPI and LPI methods 

Performance analysis of the interpolation methods for Fe 

The results of the cross validation of Fe (Table 3) show that the interpolation of the IDW method 
with the lowest RMSE and MRE values occurs at IDW power 2 (RMSE=8.6364075, and 
MRE=0.2111642). This shows that the interpolation results of the IDW power 2 is more accurate 
than the IDW power 1, IDW power 3, IDW power 4, and IDW power 5. For the RBF method the best 
interpolation results are shown by the IM technique with the smallest RMSE and MRE values 
(RMSE=8.4544950, MRE=0.2067164) if compared to the CRS, SWT, M, and TPS techniques. For the 
GPI method the results of interpolation with the lowest RMSE and MRE values occur at order 3 
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(RMSE=9.1413733 and MRE=0.2235109), while for the LPI method the lowest RMSE and MRE values 
occur at LPI order 2 (RMSE=9.0299247, and MRE=0.2207859). 

Comparison of the four interpolation methods shows that the RMSE and MRE values are as 
follows: RBF (IM) < IDW-power 2 < LPI-order 2 < GPI-order 3. These results indicate that the 
estimated value of Fe using the RBF interpolation method (IM) is better than the IDW, LPI, and GPI 
methods. 

 
Table 3: Comparison of the errors of the interpolation methods to estimate Fe grade 

 

Interpolation Method 
Element ME RMSE MRE 

 

 

IDW 

 

 

Power-1  

 

Fe 

0.0439905 8.5870638 0.2099577 

Power-2 0.2408631 8.6364075 0.2111642 

Power-3 0.3441666 8.7460275 0.2138445 

Power-4 0.4006154 8.8666945 0.2167948 

Power-5 0.4312016 8.9925964 0.2198732 

      

 

RBF 

 

Compl Regularized Spline  

Fe 

-0.0099677 8.4964732 0.2077428 

Spline with Tension -0.0220568 8.5067450 0.2079939 

Multiquadric 0.1939755 8.8676131 0.2168173 

Inverse Multiquadric -0.0648856 8.4544950 0.2067164 

Thin Plate Spline 0.0493249 9.8016668 0.2396554 

      

 

GPI 

 

Orde 1  

 

Fe 

-0.0155602 9.3799477 0.2293441 

Orde 2 0.0776022 9.5515352 0.2335395 

Orde 3 0.2089692 9.1413733 0.2235109 

Orde 4 0.0588232 9.3764661 0.2292590 

Orde 5 0.1561032 11.934502 0.2918042 

      

 

LPI 

 

Orde 1  

Fe 

0.3562450 9.0500386 0.221277 

Orde 2 -0.0323120 9.0299247 0.2207859 

Orde 3 0.1338178 9.0799835 0.2220099 

Orde 4 0.2804415 9.7993732 0.2395993 

Orde 5 0.3687216 11.069589 0.2706567 

Visualization of the spatial distribution of Fe grade as the best predictor of the IDW, RBF, GPI, 
and LPI interpolation methods is presented in Figure 4. The results of the four interpolation methods 
show different distribution patterns, but in general laterite deposits with a grade range of 25–35% 
Fe (green color on the map) occupy a larger area than the distribution of grades with other ranges. 

The best interpolated map using the RBF method (Figure 4b), shows that laterite distribution 
with a grade range of 11-25% Fe occupies an area of ±15% (blue color), a range of 25-35% Fe 
occupies an area of ±45% (green color), 35-42% Fe occupies an area of ±30% (orange color), and Fe 
> 42% occupies an area of ±10% of the study area (red color).
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(a) IDW power 2 

 
(b) RBF-IM 

 
(c) GPI orde 3 

 
(d) LPI orde 2 

Figure 4. Map of the distribution of Fe grade with the best interpolation results from the IDW, 
RBF, GPI, and LPI methods.

Performance analysis of the interpolation methods for MgO 
A comparison of the error values from the cross-validation results for MgO grades (Table 4) 

shows that the best IDW interpolation results are IDW power 1. This is indicated by the 
RMSE=3.727657181 and MRE=0.199233414 values which are the smallest when compared to the 
RMSE and MRE values at IDW power 2, power 3, power 4, and IDW power 5. Meanwhile, the best 
interpolation results for the RBF method were shown by the IM technique with values of 
RMSE=3.6994800 and MRE=0.1977274 which are the smallest values when compared to the CRS, 
SWT, M, and TPS techniques. 

For the GPI method, the best interpolation results are the 3rd order GPI with a value of 
RMSE=3.8905849 and MRE=0.2079414, while the best LPI method is the 1st order LPI technique 
with a value of RMSE=3.8661828 and MRE=0.2066372. 

A comparison of the four interpolation methods applied in the study area showed that the 
estimated distribution of MgO grades using the RBF (IM) method was better than the IDW, LPI, and 
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GPI methods. This is shown by the smallest RMSE and MRE values in the RBF method when 
compared to the IDW-power 1, LPI-order 1, and GPI-order 2 techniques. 

 
Table 4. Comparison of the errors of the interpolation methods to estimate MgO grade 

Interpolation Method 
Element ME RMSE MRE 

IDW 

Power-1  

MgO 

0.0096039 3.7276571 0.1992334 

Power-2 -0.0451281 3.8100258 0.2036358 

Power-3 -0.0725341 3.9003281 0.2084622 

Power-4 -0.0886117 3.9764416 0.2125302 

Power-5 -0.0993768 4.0451118 0.2162005 

      

RBF 

 

Compl Regularized Spline  

MgO 

0.0214197 3.7552893 0.2007102 

Spline with Tension 0.0313820 3.7389791 0.1998385 

Multiquadric -0.0292977 3.9962945 0.2135913 

Inverse Multiquadric 0.0929783 3.6994800 0.1977274 

Thin Plate Spline 0.0550910 4.5312660 0.2421841 

      

 

GPI 

 

Orde 1  

MgO 

0.0055294 3.9336026 0.2102406 

Orde 2 -0.0280796 4.0896807 0.2185826 

Orde 3 -0.0623202 3.8905849 0.2079414 

Orde 4 0.0006526 4.0286447 0.2153204 

Orde 5 -0.0203266 5.2112062 0.2785251 

      

 

LPI 

 

Orde 1  

MgO 

-0.1213830 3.8661828 0.2066372 

Orde 2 0.0397288 3.8820701 0.2074863 

Orde 3 -0.0427943 3.9513313 0.2111882 

Orde 4 0.0109751 4.3553737 0.2327832 

Orde 5 -0.0203905 5.4361406 0.2905473 

 
Spatial distribution map of MgO best predicted results from the IDW, RBF, GPI, and LPI 

interpolation methods is presented in Figure 5. In general, the distribution pattern of MgO grades 
predicted from the four interpolation methods shows almost the same pattern, where the 
distribution of high MgO grades is in the range of 6.5 –19 % (red color) occupies the northeastern 
and northwestern parts of the study area. The best interpolated map, using the RBF method (Figure 
5b), shows that the distribution of MgO grades in the range of 6.5-19% occupies an area of ±45% 
(red color) in the northwestern and northeastern parts of the research area. For the MgO in the 
range of 4.5-6.5% occupy an area of ±35% (orange color) in the north and narrow in the south, while 
MgO levels with a range of 2.5-4.5% occupy an area of ±15% (green color) in the south, and low 
levels of MgO in the range of 0.3-2.5% occupy an area of ±5% in the southwestern part of the study 
area (blue color).
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(a) IDW power 1 

 
(b) RBF-IM 

 

 
(c) GPI orde 3 

 
(d) LPI orde 1 

Figure 5. Map of the distribution of MgO grade with the best interpolation results from the 
IDW, RBF, GPI and LPI methods 

4. CONCLUSIONS 
Comparison of local deterministic (IDW, RBF, LPI), and global deterministic (GPI) 

interpolation methods to predict Ni, Fe and MgO grades in the research area was carried out 
using ME, RMSE, and MRE statistical parameters. In the research area, the RBF method 
showed the best performance for predicting the distribution of Ni, Fe and MgO grades 
compared to other deterministic interpolation methods. Cross validation measurements of 
Ni grades show that the performance of the RBF interpolation method is sequentially better 
than GPI, IDW, and LPI. For Fe and MgO grades the performance of the RBF interpolation 
method was better than IDW, LPI and GPI. 
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