Kemampuan Awal Penalaran Ilmiah Konsep Fluida Statis Mahasiswa Calon Guru Fisika: Analisis Model Rasch
Abstract
Penalaran imerupakan suatu proses berpikir sistematik dan logis untuk memperoleh sebuah kesimpulan yang dapat diperoleh melalui fakta, informasi, pengalaman, atau pendapat para ahli. Kemampuan penalaran ilmiah meliputi kekekalan materi dan volume, penalaran proporsional, pengendalian variabel, penalaran probabilitas, penalaran korelasi, dan penalaran hipotesis deduktif. Tujuan penelitian ini menganalisis kemampuan awal penalaran ilmiah mahasiswa calon guru fisika SMA menggunakan analisis model Rasch pada materi fluida statis. Metode yang digunakan yaitu deskriptif eksplanasi. Instrumen penilaian kemampuan penalaran ilmiah berbentuk soal uraian berjumlah 5 soal yang mengukur kemampuan penalaran proporsional, probabilitas, korelasi, dan hipotesis deduktif. Partisipan penelitian yaitu 19 mahasiswa calon guru (L = 2 dan P = 17) di salah satu LPTK di Bandung. Hasil yang diperoleh menunjukkan bahwa kemampuan awal penalaran ilmiah mahasiswa calon guru berada pada kategori sangat rendah (16%), rendah (42%), sedang (26%), dan tinggi (16%). Kesimpulan penelitian ini bahwa kemampuan awal penalaran ilimiah materi fluida statis mahasiswa calon guru beragam dan cenderung rendah.
Kata kunci: fluida statis, penalaran ilmiah, Rasch model
ABSTRACT
The reasoning is a systematic and logical thinking process to obtain a conclusion obtained through facts, information, experience, or expert opinion. Scientific reasoning abilities include conservation of matter and volume, proportional reasoning, variable control, probability reasoning, correlation reasoning, and deductive-hypothetical reasoning. The purpose of this study was to analyze the initial scientific reasoning abilities of prospective high school physics teacher students using the Rasch model analysis on static fluid material. The method used is a descriptive explanation. The instrument for assessing scientific reasoning ability is in the form of essay questions totaling five questions that measure proportional reasoning ability, probability, correlation, and deductive hypothesis. Research participants were 19 prospective teachers (L = 2 and P = 17) at one of the LPTKs in Bandung. The results obtained were that the initial scientific reasoning abilities of prospective teacher students were in the deficient (16%), low (42%), medium (26%), and high (16%) categories. This study concludes that the initial scientific reasoning ability of prospective teacher students varies and tends to below
Keyword: Rasch models, scientific reasoning, static fluid
Full Text:
PDF (Bahasa Indonesia)References
Anjani, F., Supeno, S., & Subiki, S. (2020). Kemampuan Penalaran Ilmiah Siswa SMA dalam Pembelajaran Fisika Menggunakan Model Inkuiri Terbimbing Disertai Diagram Berpikir Multidimensi. Lantanida Journal, 8(1), 13-28.
Amir, G. S., & Williams, J. S. (1999). Cultural influences on children's probabilistic thinking. The Journal of Mathematical Behavior, 18(1), 85-107.
Develaki, M. (2017). Using computer simulations for promoting model-based reasoning. Science & Education, 26(7-9), 1001-1027.
Falk, R., & Konold, C. (1992). The psychology of learning probability. Statistics for the twenty-first century, 151-164.
Fawaiz, S., Handayanto, S. K., & Wahyudi, H. S. (2020). Eksplorasi Keterampilan Penalaran Ilmiah Berdasarkan Jenis Kelamin Siswa SMA. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 5(7), 934-943.
Handayani, G. A., Windyariani, S., & Pauzi, R. Y. (2020). Profil Tingkat Penalaran Ilmiah Siswa Sekolah Menengah Atas Pada Materi Ekosistem:(Profile of The Level Of Scientific Reasoning of High School Student on Ecosystem Material). BIODIK, 6(2), 176-186.
Hanson, S. (2016). The assessment of scientific reasoning skills of high school science students: A standardized assessment instrument.
Hejnová, E., Eisenmann, P., Cihlár, J., & Pribyl, J. (2018). Relations between Scientific Reasoning, Culture of Problem Solving and Pupil's School Performance. Journal on Efficiency and Responsibility in Education and Science, 11(2), 38-44.
Hidayah, N. N., Wiyanto, W., & Sopyan, A. (2017). Analisis kemampuan berpikir deduksi hipotesis terhadap pemahaman konsep rangkaian resistor pada listrik arus searah. Physics Communication, 1(1), 34-42.
Hong, J. C., Hwang, M. Y., Liu, M. C., Ho, H. Y., & Chen, Y. L. (2014). Using a “prediction–observation–explanation” inquiry model to enhance student interest and intention to continue science learning predicted by their Internet cognitive failure. Computers & Education, 72, 110-120.
Jones, G. A. (1999). dkk, 1999b. Understanding Students” Probabilistic Reasoning.
Kvatinsky, T., & Even, R. (2002). Framework for teacher knowledge and understanding about probability. In Proceedings of the Sixth International Conference on Teaching Statistics (CD). Cape Town, South Africa: International Statistical Institute.
Lawson, A. E. (2004). The nature and development of scientific reasoning: A synthetic view. International Journal of Science and Mathematics Education, 2(3), 307.
Maher, C. A., & Ahluwalia, A. (2014). Counting as a foundation for learning to reason about probability. In Probabilistic Thinking (pp. 559-580). Springer, Dordrecht.
Novanti, S. K. E., Yulianti, E., & Mustikasari, V. R. (2018). Pengembangan Instrumen Tes Literasi Sains Siswa SMP Materi Tekanan Zat dan Penerapannnya dalam Kehidupan Sehari-Hari. Jurnal Pembelajaran Sains, 2(2), 6-12.
Novia, N., & Riandi, R. (2017). The analysis of students scientific reasoning ability in solving the modified Lawson Classroom Test of scientific reasoning (MLCTSR) problems by applying the levels of inquiry. Jurnal Pendidikan IPA Indonesia, 6(1).
Park, J., & Han, S. (2002). Using deductive reasoning to promote the change of students' conceptions about force and motion. International Journal of Science Education, 24(6), 593-609.
Raya, R. (2017). Profil Berpikir Probabilitas Siswa SMA dalam Menyelesaikan Masalah Probabilitas. Sains: Jurnal MIPA dan Pengajarannya, 17(1).
Sharma, S. (2014). Cultural influences in probabilistic thinking. In Probabilistic Thinking (pp. 657-681). Springer, Dordrecht.
Shofiyah, N., Supardi, Z. A. I., & Jatmiko, B. (2013). Mengembangkan penalaran ilmiah (scientific reasoning) siswa melalui model pembelajran 5e pada siswa kelas X SMAN 15 Surabaya. Jurnal Pendidikan IPA Indonesia, 2(1).
Sumintono, B., & Widhiarso, W. (2014). Aplikasi model Rasch untuk penelitian ilmu-ilmu sosial (edisi revisi). Trim Komunikata Publishing House.
Utami, P., Supeno, S., & Bektiarso, S. (2019). Lembar Kerja Siswa (Lks) Berbasis Inkuiri Dengan Bantuan Scaffolding Konseptual Untuk Meningkatkan Keterampilan Penalaran Ilmiah Fisika Siswa SMA. FKIP e-PROCEEDING, 4(1), 134-140.
Yulianti, E., & Zhafirah, N. (2020). Peningkatan Kemampuan Penalaran Ilmiah Siswa Sekolah Menengah Pertama Melalui Model Pembelajaran Inkuiri Terbimbing. Jurnal Penelitian Pendidikan IPA, 6(1), 125-130.
Zimmerman, C., & Klahr, D. (2018). Development of scientific thinking. Stevens' Handbook of Experimental Psychology and Cognitive Neuroscience, 4, 1-25
DOI: https://doi.org/10.17509/wapfi.v6i1.32461
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Unang Purwana, Dadi Rusdiana
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The Journal Wahana Pendidikan Fisika http://ejournal.upi.edu/index.php/WapFi/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The Journal WaPFi (Wahana Pendidikan Fisika).
All rights reserverd. pISSN 2338-1027 eISSN 2685-4414
Copyright © Faculty of Mathematics and Science Education (FPMIPA) Universitas Pendidikan Indonesia (UPI)