Wildfires Classification Using Feature Selection with K-NN, Naïve Bayes, and ID3 Algorithms

Ichwanul Muslim Karo Karo, Sisti Nadia Amalia, Dian Septiana

Abstract


Wildfires are a problem with a high intensity of occurrence and recurrence in Indonesia. If this problem is not properly addressed, it will threaten air circulation in the world. The source of fire can be natural or man-made. As a preventive measure for the widespread spread of fire, it is necessary to investigate the type of fire early on so that it can be determined the type of fire with the highest priority to be extinguished immediately. The process of identifying fire types can be done by classification. This research aims to classify the type of fire with three algorithms, namely K-Nearest Neighbour (K-NN), Naïve Bayes and Iterative Dichotomise 3 (ID3). The forest fire dataset was obtained from the Global Forest Watch (GFW) platform. Before entering the classification stage, the dataset went through a feature selection process, where attributes meeting the threshold were selected for the classification process. The performance of ID3 algorithm is superior compared to other algorithms with an accuracy of 65.83, precision 67.4, recall 67.02 and F1 67.21 per cent. Finally, the feature selection process contributes positively to the classification process, increasing the model performance by 2-5 per cent.

Keywords


Feature selection; ID3; K-NN; Naive bayes

Full Text:

PDF

References


Ardiyanto, S. Y., and Hidayat, T. A. (2020). Pola penegakan hukum terhadap pelaku pembakaran hutan dan lahan. PAMPAS: Journal of Criminal Law, 1(3), 79-91.

Bafjaish, S. S. (2020). Comparative analysis of naive bayesian techniques in health-related for classification task. Journal of Soft Computing and Data Mining, 1(2), 1-10.

Damuri, A., Riyanto, U., Rusdianto, H., and Aminudin, M. (2021). Implementasi data mining dengan algoritma naïve bayes untuk klasifikasi kelayakan penerima bantuan sembako. JURIKOM (Jurnal Riset Komputer), 8(6), 219-225.

Dwiasnati, S., and Devianto, Y. (2021). Classification of forest fire areas using machine learning algorithm. World Journal of Advanced Engineering Technology and Sciences, 3(1), 008-015.

Gain, A. (2015). Penerapan metode average gain, threshold pruning dan cost complexity pruning untuk split atribut pada algoritma C4. 5. Journal of Intelligent Systems, 1(2), 91-97.

Karo, I. M. K. (2020). Implementasi metode XGBoost dan feature important untuk klasifikasi pada kebakaran hutan dan lahan. Journal of Software Engineering, Information and Communication Technology (SEICT), 1(1), 10-16.

Karo, I. M. K. (2021). Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for financial well-being data classification. Indonesia Journal on Computing (Indo-JC), 6(3), 25-34.

Khairani, N. A., and Sutoyo, E. (2020). Application of k-means clustering algorithm for determination of fire-prone areas utilizing hotspots in West Kalimantan Province. International Journal of Advances in Data and Information Systems, 1(1), 9-16.

Nugroho, A. K., and Iskandar, D. (2015). Algoritma Iterative Dichotomizer 3 (ID3) pengambilan keputusan. Dinamika Rekayasa, 11(2), 44-48.

Prabawati, N. I., and Ajie, H. (2019). Kinerja algoritma Classification and Regression Tree (CART) dalam mengklasifikasikan lama masa studi mahasiswa yang mengikuti organisasi di Universitas Negeri Jakarta. PINTER: Jurnal Pendidikan Teknik Informatika dan Komputer, 3(2), 139-145.

Pratiwi, T. A., Irsyad, M., Kurniawan, R., Agustian, S., and Negara, B. S. (2021). Klasifikasi kebakaran hutan dan lahan menggunakan algoritma naïve bayes di Kabupaten Pelalawan. CESS (Journal of Computer Engineering, System and Science), 6(1), 139-148.

Priyanka, and Kumar, D. (2020). Decision tree classifier: a detailed survey. International Journal of Information and Decision Sciences, 12(3), 246-269.

Pujianto, U., and Yuni Ristanti, P. (2019). Perbandingan kinerja metode C4. 5 dan naive bayes dalam klasifikasi artikel jurnal PGSD berdasarkan mata pelajaran. TEKNO: Jurnal Teknologi Elektro dan Kejuruan, 29(1), 50-67.

Ramli, M. R., Latif, D., and Bachtiar, Y. C. (2021). Forest fire news analysis in Sumatera-Kalimantan in Republika.co.id and Bharian.com.my. International Journal of Media and Communication Research (IJMCR), 2(1), 51-67.

Riany, J., Fajar, M., and Lukman, M. P. (2016). Penerapan deep sentiment analysis pada angket penilaian terbuka menggunakan K-Nearest Neighbor. SISFO, 6(1), 147-156.

Sanjaya, S., and Absar, E. A. (2015). Pengelompokan dokumen menggunakan winnowing fingerprint dengan metode k-nearest neighbour. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi, 1(2), 50-56.

Sidette, J. A., Sediyono, E., and Nurhayati, O. D. (2014). Pendekatan metode pohon keputusan menggunakan algoritma ID3 untuk sistem informasi pengukuran kinerja PNS. Jurnal Sistem Informasi Bisnis, 2(1), 75-86.

Tajrin, T. (2020). Sistem pendukung keputusan penentukan penerimaan bantuan dana koperasi desa menggunakan algoritma ID3. Device: Journal of Information System, Computer Science and Information Technology, 1(1), 32-36.

Tangirala, S. (2020). Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm. International Journal of Advanced Computer Science and Applications, 11(2), 612-619.

Vujović, Ž. (2021). Classification model evaluation metrics. International Journal of Advanced Computer Science and Applications, 12(6), 599-606.




DOI: https://doi.org/10.17509/seict.v3i1.47537

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Journal of Software Engineering, Information and Communication Technology (SEICT)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Software Engineering, Information and Communicaton Technology (SEICT), 
(e-ISSN:
2774-1699 | p-ISSN:2744-1656) published by Program Studi Rekayasa Perangkat Lunak, Kampus UPI di Cibiru.


 Indexed by.