Prediction Calculation of PT. Indofood Sukses Makmur Tbk. Stock using R Studio with Autoregressive Integrated Moving Average (ARIMA) Method

Jonassen Kenrick, Yanti Yanti

Abstract


PT. Indofood Sukses Makmur Tbk is one of the consumer stocks with a parent company, namely PT. Indofood Sukses Makmur Tbk (INDF) is also in the consumer sector. In 2020, the impact of the coronavirus pandemic will be felt by the public and the government, one of which also has a significant effect on the economic sector. Macro companies show stock prices dropping drastically in early 2020 due to the pandemic. And that's where investors are tempted to buy shares. However, until now, the price of macro companies' claims, including INDF's shares, still fluctuates. So it is difficult to determine the future stock price. Therefore, research is needed to predict INDF stock prices in the future. This study aims to provide information about INDF stock prices in the future based on prediction results which investors can then use to read INDF stock charts in the future so that they do not experience capital loss. This research uses R Studio with Autoregressive Integrated Moving Average (ARIMA) method. Based on the research method carried out in input and data processing, checking stationarity, model specifications, parameter estimation, residual analysis, and forecasting, the results obtained regarding the prediction of INDF stock prices show fairly accurate results. This can be seen from the results of stock price predictions in February – April 2021 with the actual data available. Figures from the actual data are still included in the upper and lower limits of the predicted results.

Keywords


ARIMA; INDF stock; R Studio; Technology

Full Text:

PDF

References


Allaire, J. (2012). RStudio: Integrated development environment for R. Boston, MA, 770(394), 165-171.

Budialim, G. (2013). Pengaruh kinerja keuangan dan risiko terhadap return saham perusahaan sektor consumer goods di Bursa Efek Indonesia periode 2007-2011. Calyptra, 2(1), 1-23.

Cavanaugh, J. E., and Neath, A. A. (2019). The akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdisciplinary Reviews: Computational Statistics, 11(3), e1460.

Deviana, S., Nusyirwan, N., Azis, D., and Ferdias, P. (2021). Analisis model autoregressive integrated moving average data deret waktu dengan metode momen sebagai estimasi parameter. Jurnal Siger Matematika, 2(2), 57-67.

Didiharyono, D., Marsal, M., and Bakhtiar, B. (2018). Analisis pengendalian kualitas produksi dengan metode six-sigma pada industri air minum PT Asera Tirta Posidonia, Kota Palopo. Sainsmat: Jurnal Ilmiah Ilmu Pengetahuan Alam, 7(2), 163-176.

Fadilah, W. R. U., Agfiannisa, D., and Azhar, Y. (2020). Analisis prediksi harga saham PT. Telekomunikasi Indonesia menggunakan metode support vector machine. Fountain Informatics J, 5(2), 45-51.

González-Estrada, E., and Cosmes, W. (2019). Shapiro–wilk test for skew normal distributions based on data transformations. Journal of Statistical Computation and Simulation, 89(17), 3258-3272.

Hamonangan, F., and Sulistyawati, D. (2012). Perhitungan harga saham wajar PT. Bank Central Asia Tbk dengan menggunakan metode discounted earning approach dan price to book value. Journal of Capital Market and Banking, 1(1), 20-38.

Harell, Frak. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression 2nd Edition. Springer, vol 2:1, 103-142.

Hartati . (2017). Penggunaan metode ARIMA dalam meramal penggerakan inflasi. FMIPA Universitas Terbuka. Vol 18:1, 1-10.

Khanif, Ahmad. (2016). Pengembangan model prediksi harga saham berbasis neural network. Vol 7:1, 74-83

Lilipaly, G. S., Hatidja, D., and Kekenusa, J. S. (2014). Prediksi harga saham PT. BRI, TBK. menggunakan metode ARIMA (autoregressive integrated moving average). Jurnal Ilmiah Sains. Vol 14:2, 60-67.

Lumempow, M. M., Manoppo, W. S., and Mangindaan, J. V. (2021). Analisis kinerja keuangan diukur berdasarkan rasio likuiditas dan profitabilitas PT. Indofood Sukses Makmur, Tbk. Productivity, 2(2), 163-168.

Nelson, B. K. (1998). Time series analysis using autoregressive integrated moving average (ARIMA) models. Academic emergency medicine, 5(7), 739-744.

Nofsinger, J. R., and Sias, R. W. (1999). Herding and feedback trading by institutional and individual investors. Journal of Financial Economics, 52(1), 47-68.

Pardiansyah, E. (2017). Investasi dalam perspektif ekonomi islam: pendekatan teoritis dan empiris. Economica: Jurnal Ekonomi Islam, 8(2), 337-373.

Shumway, R. H., Stoffer, D. S., Shumway, R. H., and Stoffer, D. S. (2017). Additional time domain topics. Time series analysis and its applications: With R Examples, 241-287.

Sukamto, A. S., and Setiawan, W. (2018). Peramalan saham berdasarkan data masa lalu dengan pendekatan fuzzy time series. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 4(2), 192-196.

Taylor, S. J., and Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37-45.

Wan, Alan. (2017). ARIMA Forecasting Chapter 5. Vol 5:1, 61-109.




DOI: https://doi.org/10.17509/seict.v2i2.41552

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Journal of Software Engineering, Information and Communication Technology (SEICT)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Software Engineering, Information and Communicaton Technology (SEICT), 
(e-ISSN:
2774-1699 | p-ISSN:2744-1656) published by Program Studi Rekayasa Perangkat Lunak, Kampus UPI di Cibiru.


 Indexed by.