
53

Fastest	Route	for	Public	Health	Center	in	Bandung	with	
Dijkstra	Algorithm	and	FP-Growth	Recommendation	in	

C++	Programming	Language	

Andika Eka Kurnia1, Gregorius Christian Sunaryo2, Muhammad Rafi Zamzami3, Naila Melany4, Rafi Nazhmi
Nugraha5, Rahma Dina Ariyanti6

1,2,3,4,5,6Software Engineering Study Program, Universitas Pendidikan Indonesia, Indonesia
Correspondence: E-mail: andika.eka.kurnia@upi.edu

A B S T R A C T A R T I C L E I N F O

This research addresses the need for efficient public health
center access in Bandung. In this case study, the solution to
that specific problem is implemented using the C++
programming language. Consequently, extreme
programming is chosen as the research methodology. We
implemented Dijkstra's algorithm to find the shortest routes
and the FP-Growth algorithm to recommend frequently
visited health centers based on previous history. By
leveraging C++ for its performance advantages, the system
maps urban villages and calculates optimal paths. Additional
features manage village data, create routes, and display
health center information. The combined use of these
algorithms enhances navigation and healthcare access in
urban settings, though future work should consider real-time
traffic conditions.

© 2021 Kantor Jurnal dan Publikasi UPI

 Article History:
Submitted/Received 04 Mar 2024
First Revised 01 Apr 2024
Accepted 29 Apr 2024
First Available online 07 May
2024
Publication Date 05 June 2024

Keyword:
Graph,
Dijkstra Algorithm,
FP-Growth Algorithm,
C++ Programming Language,
Public Health Center in Bandung.

Journal	of	Software	Engineering,	Information	and	Communication	Technology	(SEICT)	5(1)	(2024)	53-62

Journal	of	Software	Engineering,	Information	and	
Communication	Technology	(SEICT)

Journal homepage: https://ejournal.upi.edu/index.php/SEICT

Kurnia et al.,	Fastest	Route	for	Public	Health	Center	in	Bandung…		| 54

DOI: https://doi.org/10.17509/seict.v5i1.71212
p-ISSN 2774-1656 | e-ISSN 2774-1699

1. INTRODUCTION

Access to fast and efficient basic healthcare services is an urgent need for the community,
especially in large cities like Bandung. The city faces complex traffic challenges, where long
travel times and traffic uncertainties can hinder access to healthcare services (Syed, et al,
2014), which in this case is the Community Health Centers (Puskesmas). This situation
becomes even more critical in emergencies, where delays can be fatal (Czeisler, et al. 2020).
Therefore, it is crucial to find a solution that ensures the community can reach the nearest
Puskesmas quickly and efficiently.

The specific problem at hand is determining the fastest route to Puskesmas in each district
of Bandung, considering the complexity of the city's road network. Additionally, there is a
need for a system that can recommend relevant destination healthcare services based on
previous usage patterns.

To address these challenges, this research proposes the use of two algorithms: Dijkstra and
FP-Growth, implemented in the C++ programming language. The Dijkstra algorithm is chosen
for its effectiveness in finding the shortest path in a graph network (Sipayung, et al. 2023),
making it highly suitable for determining the fastest route in a city with numerous nodes and
paths like Bandung. Meanwhile, the FP-Growth algorithm will be used to provide
recommendations based on previous fastest route history (Anwar, et al. 2023), ensuring that
users receive the most visited public health center .

The Dijkstra algorithm is used to find the shortest path from a single source node to all
other nodes in a weighted graph with non-negative weights. Designed by Edsger W. Dijkstra,
this algorithm is highly effective in solving shortest path problems. The use of Dijkstra's
algorithm is extensive in various programming applications (Goodrich et al., 2011). For
instance, this algorithm helps determine the shortest route for data transmission from one
node to another. In GPS navigation, Dijkstra's algorithm is used to find the fastest route from
one location to another. Additionally, this algorithm is beneficial in games and simulations for
calculating the shortest path on a map, as well as in transportation systems to optimize travel
routes and public transport schedules (Taufikurrachman 2020).

Implementing Dijkstra's algorithm in the C++ programming language offers high
performance and strong control over memory usage and other resources, allowing the
algorithm to run faster and more efficiently. C++ also provides flexibility in code development
and maintenance, as well as integration with various libraries and development tools
(Goodrich et al., 2011). Therefore, using Dijkstra's algorithm in C++ can optimize paths and
routes in various practical applications.

2. METHODS

2.1. Research Method

The research method used in this research is Extreme Programming (XP), Extreme
Programming is a method for developing software that focuses on coding activities in each
software development cycle performed (Roseandree et al., 2023). The extreme programming
method not only focuses on coding but also aspects of software development as a whole.
According to Septiani and Habibie (2022), the XP method has several stages including:

1. Planning
At this stage the activity carried out is planning, such as identifying and analyzing
problems and also the needs of both users and systems.

2. Design

55 |	Journal	of	Software	Engineering,	Information	and	Communication	Technology	(SEICT),	Volume	5	Issue	
1,	June	2024	Hal	53-62

DOI: https://doi.org/10.17509/seict.v5i1.71212
p-ISSN 2774-1656 | e-ISSN 2774-1699

After analyzing and identifying problems and needs, the next step is to create a system
design using system modeling and architectural modeling with diagrams.

3. Coding
At this stage, implementing the system design that has been made into the
programming language.

4. Testing
At this stage, testing is carried out on the functionality of the system to see if it is in
accordance with expectations and to see if there are bugs or errors when the system is
running.

Figure 1. Extreme Programming Method (XP)

2.2 Research Step

By using the extreme programming (XP) method, there are several stages carried out in
this study as shown in Figure 1, where the stages are in accordance with the extreme
programming (XP) method.

1. Planning
At this step, researchers analyze and identify problems related to the distance to health
institutions (public health centre). How to get through the path with the shortest
distance. Next, make a plan to build a system that consists of several features, such as
adding villages and health centres, viewing a list of health centers, adding routes, finding
the fastest path, and viewing route search history.

2. Design
The design is made by drawing a graph on a map of the North Bandung Regency section,
then searching for data to obtain the name of the village, health center as vertex, and
distance as weight or edge, then designing the fastest path search using the dijkstra
algorithm.

3. Coding
The programming language used is C++ by using two algorithms for the main features.
first using the dijkstra algorithm to determine the fastest path and the fp-growth
algorithm to provide recommendations for the destination of the health center to be
visited.

4. Testing

Kurnia et al.,	Fastest	Route	for	Public	Health	Center	in	Bandung…		| 56

DOI: https://doi.org/10.17509/seict.v5i1.71212
p-ISSN 2774-1656 | e-ISSN 2774-1699

After the system has been built, unit testing is carried out for each functionality to
ensure that all features or programmes run properly and as expected and to check
whether there are bugs or errors when running the programme.

3. RESULTS AND DISCUSSION

3.1. Data Scope

In this study, several locations were used as samples, as shown in Table 1. These locations
include four districts and eighteen urban villages in Bandung, Indonesia. These sample
locations were chosen to represent areas with a Public Health Centre, allowing us to
determine the shortest route to reach them.

Table 1 Data Scope Location Detail

No District Urban Village Public Health Center Code
1 Sukasari Isola Puskesmas Ledeng A

Gegerkalong UPT Puskesmas Sukarasa F

Sukarasa None G

Sarijadi Puskesmas Sarijadi H

2 Cidadap Ledeng Puskesmas Cipaku B

Ciumbuleuit Puskesmas Dadali Ciumbuleuit C

Hegarmanah Puskesmas Ciumbuleuit E

3 Sukajadi Sukawarna Puskesmas Sukawarna I

Sukagalih UPT Puskesmas Sukagalih J

Cipedes UPTD Puskesmas Sukajadi K

Sukabungah None R

Pasteur None L

4 Coblong Dago Puskesmas Dago D

Cipaganti None M

Lebak Siliwangi None N

Lebak Gede Puskesmas Sekeloa P

Sekeloa None O

Sadang Serang UPTD Puskesmas Puter Q

After some research regarding those locations, the following map Figure 2 represents the

existing urban villages and, if applicable, their corresponding Public Health Centers,
represented by their codes as shown previously in Table 1. The center points are directly at
the public health center in those urban villages. If there is no public health center at those
urban villages, the center point in Google Maps was chosen. The distance is measured from
Google Map shortest route by walking or motorcycle mode between those points.

57 |	Journal	of	Software	Engineering,	Information	and	Communication	Technology	(SEICT),	Volume	5	Issue	
1,	June	2024	Hal	53-62

DOI: https://doi.org/10.17509/seict.v5i1.71212
p-ISSN 2774-1656 | e-ISSN 2774-1699

Figure 2. Locations of Urban Villages and the Connected Edges

3.2. Graph Representation

Graph is one of the hierarchical data structures used to describe the relationship between
pairs of objects or vertices. In a graph, there are vertices and edges. In the program to
determine the fastest route to the health center, researchers use a weighted and directed
graph. A directed and weight graph is a graph that has direction and value on each (edge). In
this case, the vertex is the name of the urban village with the corresponding public health
center and district while the edge is the distance in meters (m). Figure 3 below shows the
pseudocode for initializing a structure to create a single vertex and edge instance.

Figure 3. Pseudocode for Vertex and Edge Structures

Table 2 Graph Representation

Define Structure Vertex
 String district
 String urbanVillage
 String publicHealthCenter

 Function Constructor(district, urbanVillage, publicHealthCenter)
 Set this.district to district
 Set this.urbanVillage to urbanVillage
 Set this.publicHealthCenter to publicHealthCenter
 End Function
End Structure

Define Structure Edge
 Vertex firstVertex
 Vertex secondVertex
 Long Integer distance

 Function Constructor(firstVertex, secondVertex, edgeDistance)
 Set this.firstVertex to firstVertex
 Set this.secondVertex to secondVertex
 Set this.distance to edgeDistance
 End Function
End Structure

Kurnia et al.,	Fastest	Route	for	Public	Health	Center	in	Bandung…		| 58

DOI: https://doi.org/10.17509/seict.v5i1.71212
p-ISSN 2774-1656 | e-ISSN 2774-1699

Data Type Properties Example Value

vector<Vertex *> Vertices { {Sukasari, Puskesmas Ledeng,
Isola}, … }

vector<Edge *> Edges { {Gegerkalong, Isola, 800} … }

The graph is represented as a set of vertices and edges with table-like structures, as shown

in Table 2 and Figure 4. This graph representation is easy to read due to its declarative nature
when creating vertices and edges, which differs from the usual matrix representation. Not
only that, this representation makes it easy to implemented related algorithms like Dijkstra
and FP-Growth, which are covered in the next section.

Figure 4. Pseudocode for Graph

3.3. Dijkstra's Algorithm Implementation

The dijkstra algorithm is implemented in C++ using map and pair structure to represent
each vertex and the corresponding weight or distance as shown in Figure 5. The first step in
this algorithm is to calculate the shortest distance between the starting vertex and destination
vertex. The second step is backward to get all the vertices in its map and pair structure.

Function findShortestPath(startVertex, endVertex):
 Initialize shortestDistance as a map from Vertex to (Vertex, Integer)
 Initialize visitedVertices as an empty list
 For each vertex in this.vertices:
 Set shortestDistance[vertex] to (null, INFINITY)

 Set currentVertex to startVertex
 Set shortestDistance[currentVertex] to (currentVertex, 0)
 While currentVertex is not endVertex:
 Append currentVertex to visitedVertices
 Set currentEdges to this.getEdges(currentVertex)
 For each edge in currentEdges:
 Set destinationVertex to edge.secondVertex
 Set distance to shortestDistance[currentVertex].second + edge.distance

 If distance < shortestDistance[destinationVertex].second:
 Set shortestDistance[destinationVertex] to (currentVertex, distance)

 Set minDistance to INFINITY
 For each vertex in this.vertices:
 If shortestDistance[vertex].second < minDistance and
 shortestDistance[vertex].first is not vertex and
 vertex is not in visitedVertices:
 Set minDistance to shortestDistance[vertex].second

Define Structure Graph
 List of Vertex pointers called vertices
 List of Edge pointers called edges
End Structure

59 |	Journal	of	Software	Engineering,	Information	and	Communication	Technology	(SEICT),	Volume	5	Issue	
1,	June	2024	Hal	53-62

DOI: https://doi.org/10.17509/seict.v5i1.71212
p-ISSN 2774-1656 | e-ISSN 2774-1699

 Set currentVertex to vertex

 If minDistance is INFINITY:
 Initialize emptyGraph as a new Graph
 Return (emptyGraph, INFINITY)

 Set totalDistance to shortestDistance[endVertex].second
 Initialize shortestPath as a new Graph

 While currentVertex is not startVertex:
 shortestPath.addVertex(currentVertex)
 Set previousVertex to shortestDistance[currentVertex].first
 For each edge in this.edges:
 If (edge.firstVertex is currentVertex and edge.secondVertex is previousVertex) or
 (edge.firstVertex is previousVertex and edge.secondVertex is currentVertex):
 shortestPath.addEdge(currentVertex, previousVertex, edge.distance)
 Break

 Set currentVertex to previousVertex

 shortestPath.addVertex(startVertex)
 shortestPath.reverseEdges()
 Return (shortestPath, totalDistance)
End Function

Figure 5. Dijkstra’s Algorithm Pseudocode

3.4. FP-growth Implementation

The FP-Growth recommendation is implemented in the fastest route feature when users
input the start urban village. The transaction data is calculated from the fastest route history
in the history.json file every time users enter the start urban village. After the frequent
pattern generated, the system selects all items with the highest frequent pattern and
recommends them to the users as shown in Figure 6. If none are selected, skip the
recommendation and continue to the destination urban village input. The complete source
code for this implementation could be found on this github
https://github.com/dikdns/fastest-rute-public-health-center.

Figure 6. Recommendation Terminal Screen

3.5. Extended Features
3.5.1. Add Urban Villages

Kurnia et al.,	Fastest	Route	for	Public	Health	Center	in	Bandung…		| 60

DOI: https://doi.org/10.17509/seict.v5i1.71212
p-ISSN 2774-1656 | e-ISSN 2774-1699

The Add Urban Villages feature is a process for managing the data of urban villages in the
system. This feature helps to ensure that the data is up-to-date, structured, and permanently
stored, thus supporting various operations related to neighborhoods in the system.
This feature consists of several main steps:
● Requesting User Input: The user is asked to enter the information of the new

neighborhood, including the name of the sub district and neighborhood, as well as the
name of the public health center (if applicable).

● Creating a New Vertex Object: Based on the information entered by the user, a new
Vertex object is created to represent the new neighborhood.

● Add to Main Graph: The new Vertex is added to the main Graph called mainRoute. The
Graph stores information about the structure and relationships between neighborhoods
in the system.

● Saving Data to JSON File: The new neighborhood data is saved to a JSON file called
districts.json for permanent storage.

This feature also has several benefits:
● Updating Urban Village Data: This feature allows system administrators to add new

neighborhoods and update existing neighborhood information, ensuring that the
neighborhood data in the system is always up-to-date.

● Maintaining System Structure: Adding new neighborhoods to the main Graph maintains
the structure and relationships between neighborhoods in the system, allowing for
various operations and data analysis involving those neighborhoods.

● Permanent Data Storage: Saving neighborhood data to the JSON file districts.json
ensures that neighborhood data is permanently stored and can be accessed by the
system in the future.

3.5.2. Create Route

The Create Route feature allows users to easily build a network of connections between
health centers. First, the system collects the name of the starting health center from the user
and then retrieves the name of the destination health center. The user is asked to enter the
distance between the two health centers in meters. Next, a new Edge object is created to
connect the two newly created Vertex objects, and the distance entered by the user is
assigned to the Edge object. This new Edge object, representing the connection between the
health centers, is inserted into the main routes. Finally, all route data, including health center
names, distances, and associated Edge objects, are stored in a JSON file named "routes.json,"
which serves as a repository for the network of connections between health centers.
3.6. Demo Scenarios

Figure 7. Main Menu

In the scenario where the user starts in the Pasteur urban village, the program initiates by
prompting the user to select the "Find Fastest Route" option, as illustrated in Figure 7. Upon
selection, the user is prompted to input the starting urban village, designated as "Pasteur".

61 |	Journal	of	Software	Engineering,	Information	and	Communication	Technology	(SEICT),	Volume	5	Issue	
1,	June	2024	Hal	53-62

DOI: https://doi.org/10.17509/seict.v5i1.71212
p-ISSN 2774-1656 | e-ISSN 2774-1699

The program then utilizes FP-Growth algorithms to recommend a destination, as depicted in
Figure 8. In this instance, the suggested destination is "Cipedes (UPTD Puskesmas Sukajadi)",
based on predefined common routes stored in the history.json file.

Figure 8. Demo Scenario: Recommendation Based on User Location in Pasteur

The user has the option to either accept this recommendation or enter a different

destination. After entering the destination, as shown in Figure 9, the program utilizes
Dijkstra's algorithm to determine the shortest path between Pasteur and the selected
destination. In this particular case, the algorithm computes that the shortest distance
between Pasteur and Cipedes is approximately 750 meters.

Figure 9. Demo Scenario Results for User Location in Pasteur

In another scenario where the user is located on Tubagus Ismail Street within the Sekeloa

Urban Village, similar to the previous scenario, the user inputs the starting urban village as
"Sekeloa". The program then recommends "Lebak Gede (Puskesmas Sekeloa)" as the
destination. After the user enters the destination, the program calculates the shortest
distance, which is 800 meters, between Sekeloa and Lebak Gede.

Figure 10. Demo Scenario Results for User Location in Sekeloa

Kurnia et al.,	Fastest	Route	for	Public	Health	Center	in	Bandung…		| 62

DOI: https://doi.org/10.17509/seict.v5i1.71212
p-ISSN 2774-1656 | e-ISSN 2774-1699

4. CONCLUSION

This research shows that the combination of the two algorithms, namely Dijkstra and FP-
Growth, is very effective in creating a system that is not only optimal in terms of determining
the fastest route to the health center but also intelligent in providing recommendations for
health center destinations based on the previous history. The results of this research can be
implemented to improve health services and navigation efficiency in an urban context.
However, it should be underlined that there are several other factors besides distance that
affect the fastest path, these other factors can be road conditions and situations.

5. AUTHORS’ NOTE

The authors declare that there is no conflict of interest regarding the publication of this
article. Authors confirmed that the paper was free of plagiarism.

6. REFERENCES

Anwar, B., Ambiyar, and Fadhliah. (2023). Application of the FP-Growth method to determine
drug sales patterns. Sinkron: Jurnal dan Penelitian Teknik Informatika, 7(1).

Czeisler, M. É., Marynak, K., Clarke, K. E., et al. (2020). Delay or avoidance of medical care
because of COVID-19–related concerns — United States, June 2020. MMWR Morbidity
and Mortality Weekly Report, 69(1250–1257).

Goodrich, M. T., Tamassia, R., and Mount, D. M. (2011). Data structures and algorithms in
C++. John Wiley & Sons.

Roseandree, B. S., Mulyana, A. J., Fuji, R., Pratama, A. H., and Purnama, P. Searching for the
Fastest Route to Tourist Attractions with the Kruskal Algorithm in the C++ Programming
Language. Journal of Software Engineering, Information and Communication Technology
(SEICT), 4(2), 139-150.

Septiani, N. A., and Habibie, F. Y. (2022). Penggunaan Metode Extreme Programming Pada
Perancangan Sistem Informasi Pelayanan Publik. Jurnal Sistem Komputer dan
Informatika, 3(3), 341-349.

Sipayung, L. Y., Sinaga, C. R., and Sagala, A. C. (2023). Application of Dijkstra’s algorithm to
determine the shortest route from city center to Medan city tourist attractions. Journal
of Computer Networks, Architecture and High Performance Computing, 5(2).

Srikant, R., and Agrawal, R. (1995). Mining generalized association rules.
Syed, S. T., Gerber, B. S., and Sharp, L. K. (2013). Traveling towards disease: transportation

barriers to health care access. Journal of community health, 38(5), 976–993.
Taufikurrachman, H., Huda, M. N., Satrio P. P, M. R., and M, M. H. (2020, April 30). Konsep

Lintasan Terpendek algoritma dijkstra. YouTube.

