Analysis of The Use of AI in Detecting Managerial Fraud: Systematic Literature Review
Abstract
This article discusses the role of artificial intelligence (AI) in managerial fraud detection, a critical issue for many organizations. In recent years, technology has driven the use of AI to identify and prevent fraud, such as misleading financial statements and asset misappropriation. AI offers a more sophisticated approach than traditional techniques, using big data analytics and machine learning algorithms to detect suspicious patterns with high accuracy. By leveraging historical and real-time data, AI systems can spot anomalies that humans might miss. The application of this technology increases the efficiency of fraud detection and helps organizations take more proactive preventive measures, potentially reducing the cost of investigations and litigation. However, challenges such as ethical issues, data privacy, and algorithm transparency need to be addressed. Overall, the potential for AI to improve integrity and accountability in management is significant, making it a critical tool in maintaining organizational health. With the ever-increasing complexity of the business environment, the use of AI in managerial fraud detection is expected to continue to grow.
Keywords
Full Text:
PDFReferences
Alhaddad, M. M. (2018). Artificial Intelligence in Banking Industry: A Review on Fraud Detection, Credit Management, and Document Processing. ResearchBerg Review of Science and Technology , 2(3), 25–46. https://researchberg.com/index.php/rrst/article/view/37
Alqafi, M., & Azizah, E. N. (2024). Tantangan dan Peluang Penerapan Artificial Intelligence Mendukung Proses Audit. Jurnal Ekonomi, Manajemen Dan Akuntansi, 2(5), 667–678.
Amelia, I., Azzahra, Y. N., Abda, A., & Azmi, Z. (2024). Pemanfaatan Artificial Intelligence Dalam Akuntansi: Kajian Literatur Review. Jurnal Riset Ilmu Akuntansi, 3(1), 129–140. https://doi.org/10.55606/akuntansi.v3i1.1472
Anas, I., & Zakir, S. (2024). Artificial Intelligence: Solusi Pembelajaran Era Digital 5.0. Jurnal Sains Komputer & Informatika (J-SAKTI), 8(1), 35–46.
Caseba, F. L., & Dewayanto, T. (2024). Penerapan Artificial Intelligence, Big Data, Dan BlockchainDalam Fintech Payment Terhadap Risiko Penipuan Komputer(Computer Fraud Risk): a Systematic Literature Review. Diponegoro Journal of Accounting, 1–15.
Dewi, F. S., & Dewayanto, T. (2024). Peran Big Data Analytics, Machine Learning, Dan Artificial Intelligence Dalam Pendeteksian Financial Fraud: a Systematic Literature Review. Diponegoro Journal of Accounting, 13(3), 1–15. http://ejournal-s1.undip.ac.id/index.php/accounting
Febrianto, H. G., & Fitriana, A. I. (2020). Mendeteksi Kecurangan Laporan Keuangan Dengan Analisis Fraud Diamond Dalam Perspektif Islam (Studi Empiris Bank Umum Syariah di Indonesia). Profita: Komunikasi Ilmiah Akuntansi Dan Perpajakan, 13(1), 85–95. https://doi.org/10.22441/profita.2020.v13.01.007
Khomariah, O. A., & Khomsiyah. (2023). Pengaruh Kepemilikan Manajerial, Kinerja Keuangan, dan Kualitas Audit terhadap Kecurangan Laporan Keuangan. Owner: Riset & Jurnal Akuntansi, 7(4), 3610–3620. https://doi.org/10.33395/owner.v7i4.1734
Manel, H. A., Sania, W., Fadhillah, N., & Mahmud, A. (2023). Implementasi Artificial Intelligence dalam Sistem Informasi Akuntansi dan Manajemen. Journal Akuntansi Bisnis Dan Ekonomi, 9(2), 3460–3467.
Mawlidy, E. R., Primasatya, D. R., & Lorensa, L. (2024). Kemampuan Artifical Intelligence Terhadap Pendeteksian Fraud: Studi Literatur. Jurnal Studi Akuntansi Dan Keuangan, 7(1), 89–104. https://doi.org/10.29303/akurasi.v7i1.488
Nainggolan, E. P. (2024). Pengaruh Kecerdasan Buatan terhadap Efektivitas Sistem Akuntansi. Balance: Jurnal Akuntansi Dan Manajemen, 3(1), 49–54.
Okinaldi, J., & Aziza, N. (2024). Implementasi Teknologi Audit Dalam Era Digital. Jurnal Ilmiah MEA (Manajemen, Ekonomi, Dan Akuntansi), 8(2), 146–159. https://doi.org/10.31955/mea.v8i2.4016
Pratama, M. N. S., Nahong, M. S., Nggi, S. A., Leki, A. R. S., & Bhebhe, M. C. (2023). Pengaruh Kecerdasan Buatan Dalam Proses Audit Keuangan: Tantangan Dan Peluang Di Era Digital. Jurnal Locus: Penelitian Dan Pengabdian, 2(12), 1181–1190. https://doi.org/10.58344/locus.v2i12.2333
Putri, A. P. (2024). Transformasi Akuntansi di Era Big Data dan Teknologi Artificial Intelligence (AI). Jurnal Cahaya Mandalika, 5(2), 937–943.
Raihan, M., Nasution, M. L. I., & Daulay, A. N. (2024). Analisis Dampak Perkembangan Teknologi AI Dalam Meningkatkan Efisiensi Operasional Bank Syariah (Studi Kasus Bank Sumut Kantor Cabang Syariah Medan Ringroad). Jurnal Ekonomi Dan Ekonomi Syariah, 7(2), 2049–2062. https://doi.org/10.36778/jesya.v7i2.1762
Ramadhani, F., & Trimuliani, D. (2024). Pemanfaatan Sistem Artificial Intelligence Pada Industri Perbankan: Systematic Literature Review. Jurnal Mutiara Akuntansi, 9(1), 37–49. https://doi.org/10.51544/jma.v9i1.5281
Shamaya, V. P., Ashara, S. N., Sofyan, A., Aprilia, S., Leonica, A., & Ratnawati, T. (2023). Studi Literatur: Artificial Intelligence Dalam Audit. Jurnal Riset Manajemen Dan Ekonomi (Jrime), 1(3), 255–267. https://doi.org/10.54066/jrime-itb.v1i3.461
Supriadi, I. (2024). The audit revolution: Integrating artificial intelligence in detecting accounting fraud. Akuntansi Dan Teknologi Informasi, 17(1), 48–61. https://doi.org/10.24123/jati.v17i1.6279
DOI: https://doi.org/10.17509/jrak.v12i3.75231
Refbacks
- There are currently no refbacks.
Jurnal Riset Akuntansi dan Keuangan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats