Implementation of Artificial Intelligence in Energy Exploration and Management: A Literature Review

Nur Elah

Abstract


This research examines the utilization of artificial intelligence (AI) in the management and exploration of wind energy potential. Three main areas are discussed: 1) Household Energy Management, where AI-based fuzzy logic systems have proven effective in optimizing the use of electrical appliances and reducing energy consumption, 2) Power Generation Energy Management, where artificial neural network (ANN)-based prediction models are capable of accurately estimating fluctuations in electricity demand to enable better supply planning, and 3) Energy Potential Prediction, where AI algorithms such as Backpropagation Neural Network (BPNN) can predict wind speed with a high degree of accuracy, enabling more reliable estimation of the potential for wind power generation. Overall, this research demonstrates that the integration of artificial intelligence technology has great potential in enhancing energy efficiency and management in the future

Keywords


Artificial Intelligence, Wind Energy, Optimalization, Energy, Energy Potential

Full Text:

PDF

References


A. Pan, S. Xu, and S. A. H. Zaidi, “Environmental impact of energy imports: Natural resources income and natural gas production profitability in the Asia-Pacific Economic Cooperation Countries,” Geosci. Front., vol. 15, no. 2, 2024, doi: 10.1016/j.gsf.2023.101756.

B. Williams, D. Bishop, P. Gallardo, and J. G. Chase, “Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations,” Energies, vol. 16, no. 13, 2023, doi: 10.3390/en16135155.

G. Mcavoy and K. P. Vadrevu, “Nighttime Lights and Population Variations in Cities of South / Southeast Asia : Distance-Decay Effect and Implications,” Remote Sens., 2024.

L. Zhang and X. Wen, “Nonlinear Effect Analysis of Electricity Price on Household Electricity Consumption,” Math. Probl. Eng., vol. 2021, 2021, doi: 10.1155/2021/8503158.

R. Obringer et al., “Implications of Increasing Household Air Conditioning Use Across the United States Under a Warming Climate,” Earth’s Futur., vol. 10, no. 1, pp. 1–18, 2022, doi: 10.1029/2021EF002434.

P. R. White, J. D. Rhodes, E. J. H. Wilson, and M. E. Webber, “Quantifying the impact of residential space heating electrification on the Texas electric grid,” Appl. Energy, vol. 298, 2021, doi: 10.1016/j.apenergy.2021.117113.

Z. Guo, J. R. O’Hanley, and S. Gibson, “Predicting residential electricity consumption patterns based on smart meter and household data: A case study from the Republic of Ireland,” Util. Policy, vol. 79, 2022, doi: 10.1016/j.jup.2022.101446.

Prastowo and L. P. Damayanti, “The Relationship between Electricity Consumption, Oil Prices, and Economic Growth in Indonesia,” J. Asset Manag. Public Econ., vol. 1, no. 1, pp. 28–39, 2022, doi: 10.12928/jampe.v1i1.4949.

J. Jurasz, A. Beluco, and F. A. Canales, “The impact of complementarity on power supply reliability of small scale hybrid energy systems,” Energy, vol. 161, pp. 737–743, 2018, doi: 10.1016/j.energy.2018.07.182.

L. Ma, J. Yang, S. Peng, and Y. Jiang, “Long and short-term power supply and demand forecasting based on time series analysis under high proportion clean energy integration,” J. Phys., vol. 2703, no. 1, 2024, doi: 10.1088/1742-6596/2703/1/012020.

A. I. Osman et al., “Cost, environmental impact, and resilience of renewable energy under a changing climate: a review,” Environ. Chem. Lett., vol. 21, no. 2, pp. 741–764, 2023, doi: 10.1007/s10311-022-01532-8.

Y. Chen, G. Ma, G. Xu, H. Chen, and H. Zhang, “Restraining the Demand Side Power Fluctuation of Active Distribution Network Using 0°/180° Phase Controlled Electric Spring,” J. Electr. Comput. Eng., 2018, doi: 10.1155/2018/5950497.

C. Collins, D. Dennehy, K. Conboy, and P. Mikalef, “Artificial intelligence in information systems research: A systematic literature review and research agenda,” Int. J. Inf. Manage., vol. 60, 2021, doi: 10.1016/j.ijinfomgt.2021.102383.

S. Onwusinkwue et al., “Artificial intelligence (AI) in renewable energy: A review of predictive maintenance and energy optimization,” World J. Adv. Res. Rev., vol. 21, no. 1, pp. 2487–2799, 2024, doi: 10.30574/wjarr.2024.21.1.0347.

K. Ukoba, K. O. Olatunji, E. Adeoye, T. C. Jen, and D. M. Madyira, “Optimizing renewable energy systems through artificial intelligence: Review and future prospects,” Energy Environ., 2024, doi: 10.1177/0958305X241256293.

J. Verma, L. Sandys, A. Matthews, and S. Goel, “Readiness of artificial intelligence technology for managing energy demands from renewable sources,” Eng. Appl. Artif. Intell., vol. 135, 2024, doi: 10.1016/j.engappai.2024.108831.

A. Entezari, A. Aslani, R. Zahedi, and Y. Noorollahi, “Artificial intelligence and machine learning in energy systems: A bibliographic perspective,” Energy Strateg. Rev., vol. 45, 2023, doi: 10.1016/j.esr.2022.101017.

A. S. Afandi, A. Soetedjo, and I. S. Faradisa, “Desain Sistem Management Energi Listrik Rumah Berbasis Artificial Intelligent Yang Di Implementasikan Pada Prototipe Smarthome,” Magnetika, vol. 8, no. 2, pp. 224–235, 2024.

T. A. R. Arungpadang et al., “Analisis Kebutuhan Energi Listrik dengan Jaringan Syaraf Tiruan,” J. Tekno Mesin, vol. 4, no. 2, pp. 84–89, 2018.

A. Malek, S. Suriadi, and K. Saddami, “Prediksi Kecepatan Angin Jangka Menengah dengan Artificial Neural Network untuk Estimasi Daya Listrik Tenaga Angin (Studi Kasus: Kota Sabang),” J. Serambi Eng., vol. 8, no. 3, pp. 6078–6087, 2023, doi: 10.32672/jse.v8i3.6010.




DOI: https://doi.org/10.17509/jmai.v1i2.76906

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.