Forecasting Electrical Energy Loads at PT Krakatau Daya Electric Using the Linear Regression Method

Krisna Bayu, Dhea Rahmalia Henidar, Fahmi Hermastiandi, Galih Prasetya, Adi Nugraha

Abstract


The importance of the role of electrical energy at this time cannot be denied and it is difficult to imagine how life would be without electricity, not only as a source of light at night in Cilegon City because it is rich in resources, especially in the industrial sector. Therefore, the existence of a guaranteed power supply is very important. PT Krakatau Daya Listrik, as the main provider and distributor of electrical energy in the KIEC Area (Krakatau Industrial Estate Cilegon), indirectly becomes the backbone for the economy of the people in the trading area of PT Krakatau Daya Listrik. The method used in making predictions is the linear regression method which is a method to test how accurate the relationship between x and y is. In addition, to do forecasting or similarity testing, use Google Colab. The results of the two show a correlation coefficient of 0.4 which is enough to have a relationship between x and y, the more years the more power or electrical energy is needed. This is very relevant considering that electrical energy has become a necessity, so this forecast can help electricity service providers to meet consumer needs.


Keywords


Electrical energy; Forecasting; Linear regression

Full Text:

PDF

References


P. H. Hutabarat, M. F. Zambak, And S. Suwarno, “Prediksi Kebutuhan Energi Listrik Wilayah Pln Kota Parapat Simalungun Sampai Tahun 2024,” Journal Of Electrical And System Control Engineering, Vol. 5, No. 2, Pp. 52–58, Feb. 2022, Doi: 10.31289/Jesce.V5i2.5757.

I. Sholeh, U. Situmeang, P. Studi Teknik Elektro, F. Teknik, And U. Lancang Kuning Pekanbaru Jl Yos Sudarso Rumbai, “Studi Peramalan Beban Pada Gardu Induk Teluk Lembu Uip3bs Upt Pekanbaru PT Pln (Persero),” 2021.

J. T. Putra, N. Fadhilah, And M. Arrofiq, “Peramalan Beban Pada Gardu Induk Mantingan Dalam Penentuan Kapasitas Transformator Dengan Metode Regresi Linear,” 2021.

P. Mangera, “Perkiraan Kebutuhan Energi Listrik Jangka Panjang Pada PT Pln (Persero) Wilayah Papua Dan Papua Barat Area Merauke Dengan Menggunakan Metode Regresi Linier,” Mustek Anim Ha, Vol. 7, No. 3, Pp. 247–256, Dec. 2018, Doi: 10.35724/Mustek.V7i3.1736.

N. Rahmadani, M. Musaruddin, M. N. A. Nur, H. T. Mokui, and A. N. Aliansyah, “Analisis Prakiraan Kebutuhan Energi Listrik di Kabupaten Kolaka Utara menggunakan Metode Dkl 3.2, Regresi Linear dan Software Leap,” J. Fokus Elektroda Energi List. Telekomun. Komputer, Elektron. dan Kendali), vol. 8, no. 2, pp. 101–109, 2023.

H. Riandi, “Analysis Forecasting Electrical Loads In Rsup. Dr. M. Djamil Padang Until 2029,” No. 01, 2020.

J. Wu, Y. G. Wang, Y. C. Tian, K. Burrage, And T. Cao, “Support Vector Regression With Asymmetric Loss For Optimal Electric Load Forecasting,” Energy, Vol. 223, May 2021, Doi: 10.1016/J.Energy.2021.119969.

O. D. P. Yuan, A. N. Afandi, and H. Putranto, “Tekno Jurnal Teknologi Elektro Dan Kejuruan Studi Prakiraan Beban Listrik Menggunakan Metode Artificial Neural Network,” 2018. [Online]. Available: Http://Journal2.Um.Ac.Id/Index.Php/Tekno.

Rizqulloh, F. R., Prasetyono, S., & Cahyadi, W. (2020). Analisis Perbandingan Peramalan Beban Listrik Jangka Pendek Antara Metode Backpropagation Neural Network Dengan Metode Regresi Linear. Jurnal Arus Elektro Indonesia, 6(3), 69-77.

E. Triyanto, H. Sismoro, And A. D. Laksito, “Implementasi Algoritma Regresi Linear Berganda Untuk Memprediksi Produksi Padi Di Kabupaten Bantul,” Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, Vol. 4, No. 2, Pp. 66–75, Jul. 2019, Doi: 10.36341/Rabit.V4i2.666.




DOI: https://doi.org/10.17509/jmai.v1i1.69977

Refbacks

  • There are currently no refbacks.