KEKONVERGENAN LEMAH PADA RUANG HILBERT
Abstract
ABSTRAK. Penelitian ini mengkaji mengenai kekonvergenan lemah pada
ruang Hilbert atas lapangan real. Kekonvergenan lemah termotivasi oleh
kekonvergenan kuat sehingga terdapat beberapa sifat dari kekonvergenan
kuat yang berlaku pada kekonvergenan lemah seperti ketunggalan limit,
kelinearan limit, dan keterbatasan suatu barisan. Keterkaitan antara
konvergen kuat dan lemah mengakibatkan terdapat pendefinisian dan sifatsifat
dari
barisan
Cauchy
lemah
dan
himpunan
kompak
secara
barisan
dan
secara
lemah. Di akhir pembahasan dibicarakan mengenai keberlakuan
Teorema Bolzano-Weierstrass pada ruang Hilbert.
Kata kunci: Ruang Hilbert, konvergen kuat, konvergen lemah, himpunan
kompak secara barisan dan secara lemah, teorema Bolzano-Weiertrass.
ABSTRACT. This study discusses the weak of convergence in Hilbert
space over the real field. The weak of convergence is motivated by a strong
convergence as a result that there are some properties of the strong
convergence which is applicable in the weak of convergence such as
uniqueness of limit, linearity of limit, and boundedness of a sequence. The
relationship between strong and weak convergent implies that there are the
definition and properties of weak Cauchy sequence and weakly compact
set. In the end of the discussion discussed about the generalize of BolzanoWeierstrass
theorem
in
Hilbert
space.
Keywords: Hilbert Space, strong convergence, weak convergence, weakly
compact set, Bolzano-Weierstrass Theorem.
Full Text:
PDFDOI: https://doi.org/10.17509/jem.v5i2.9593
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Moch. Ramadhan Mubarak, Encum Sumiaty, Cece Kustiawan