Komparasi Metode Matriks Dekomposisi Menilai Kelebihan dan Kekurangan SVD, QR, dan LU dalam Aplikasi Aljabar Linear
Abstract
Matrix decomposition techniques like Singular Value Decomposition (SVD), QR decomposition, and LU decomposition play crucial roles in various applications involving data analysis, system-solving, and data security. In this study, a comparison of the three matrix decompositions was studied. This study employs a literature review of recent research that explores the applications of SVD, QR, and LU in watermarking, encryption, and intrusion detection. The findings indicate that SVD is well-suited for applications requiring flexible computation, such as image processing and dimensionality reduction. QR excels in numerical stability and high precision for solving linear systems and cryptography; while LU is more efficient for large-scale linear system solutions. This discussion emphasizes the specific advantages of each method and its potential applications across different fields.
Keywords: Linear Algebra, LU Decomposition, Matrix Decomposition, Singular Value Decomposition, QR Decomposition.
Abstrak
Dekomposisi matriks seperti Singular Value Decomposition (SVD), Dekomposisi QR, dan Dekomposisi LU memiliki peran penting dalam berbagai aplikasi yang melibatkan analisis data, pemecahan sistem persamaan, dan pengamanan data. Pada penelitian ini dikaji perbandingan ketiga dekomposisi matriks tersebut. Metode yang digunakan adalah tinjauan literatur terhadap berbagai penelitian terkini yang mengeksplorasi aplikasi SVD, QR, dan LU dalam watermarking, enkripsi, serta deteksi intrusi. Hasil penelitian menunjukkan bahwa SVD sangat cocok untuk aplikasi yang membutuhkan komputasi fleksibel seperti pengolahan citra dan pengurangan dimensi, QR unggul dalam stabilitas numerik dan presisi tinggi untuk pemecahan sistem persamaan linear dan kriptografi, sedangkan LU lebih efisien dalam penyelesaian sistem persamaan linear besar. Pembahasan ini menekankan keunggulan spesifik masing-masing metode dan aplikasi potensialnya di berbagai bidang.
Keywords
Full Text:
PDFReferences
Aazmi, A., Zhang, D., Mazzaglia, C., Yu, M., Wang, Z., Yang, H., Huang, Y. Y. S., & Ma, L. (2024). Biofabrication methods for reconstructing extracellular matrix mimetics. Bioactive Materials, 31, 475–496.
Breaz, S., & Rafiliu, C. (2023). Decompositions of matrices by using commutators. Linear Algebra and Its Applications, 662, 39–48.
Bru, R., Gassó, M. T., Giménez, I., Santana, M., & Scott, J. (2023). Combined matrix of diagonally equipotent matrices. Special Matrices, 11(1), 1-11.
Cao Thi, T.-X. (2023). Singular value decomposition and applications in data processing and artificial intelligence. HPU2 Journal of Science: Natural Sciences and Technology, 2(3), 34–41.
Chen, C. S., Karageorghis, A., & Lei, M. (2024). Local MFS matrix decomposition algorithms for elliptic BVPs in annuli. Numerical Mathematics, 17(1), 93–120.
Deng, Y., Chang, Q., Chang, H., Liu, W., Ma, P., Zhou, P., & Jiang, Z. (2023). Analysis of an image noise sensitivity mechanism for matrix-operation-mode-decomposition and a strong anti-noise method. Optics Express, 31(8), 12299.
Dubiel, E. A., Myler, H., Arnold, M. E., Bennett, P., Gatz, J., Groeber, E., Gupta, S., Kane, C., Li, F., Mylott, W., Noah, C., O’Dell, M., Tewalt, E., Warrino, D., & Vick, A. (2022). Biological matrix supply chain shortages: more matrices are now rare—the case for surrogate matrices. AAPS Journal, 24(2), 1–6.
Fan, K., Huang, Z., Zeng, J., & Wu, W. (2022). High-fidelity tensor-decomposition based matrix formation for isogeometric buckling analysis of laminated shells with solid-shell formulation. International Journal for Numerical Methods in Engineering, 123(21), 5230–5273.
Fidalgo-Pereira, R., Catarino, S. O., Carvalho, Ó., Veiga, N., Torres, O., Braem, A., & Souza, J. C. M. (2024). Light transmittance through resin-matrix composite onlays adhered to resin-matrix cements or flowable composites. Journal of the Mechanical Behavior of Biomedical Materials, 151, 106353.
Gidisu, P. Y., & Hochstenbach, M. E. (2024). A restricted SVD type cur decomposition for matrix triplets. SIAM Journal on Scientific Computing, 46(2), S401–S423.
Guo, Q., Tian, Y., Qi, L., Wang, Y., Li, D., & Kaliuzhnyi, M. (2024). A SAR multiple RFI suppression method via frobenius norm and iterative matrix decomposition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, 3927–3939.
Huda, M. A., Wahiduzzaman, M., & Ara, M. (2022). Matrix factorization, decomposition and splitting methods and its applications in physical problems. Khulna University Studies, 19(2), 141-153.
Jalali, Z. S., Wang, C., Kearney, G., Yuan, G., Ding, C., Zhou, Y., Wang, Y., & Soundarajan, S. (2023). Memristor-based spectral decomposition of matrices and its applications. IEEE Transactions on Computers, 72(5), 1460–1472.
Le Borne, S. (2023). A block Cholesky-LU-based QR factorization for rectangular matrices. Numerical Linear Algebra with Applications, 30(5), 1–10.
Li, M., & Li, J. (2024). Microexpression recognition model based on non negative matrix decomposition in intelligent classroom. Intelligent Systems with Applications, 22, 200343.
Liu, Q., Peng, C., Yang, P., Zhou, X., & Liu, Z. (2023). A fast matrix completion method based on matrix bifactorization and QR decomposition. Wireless Communications and Mobile Computing, 2023(1), 1-12.
Liu, Y., Zhang, K., & Wang, Z. (2023). Intrusion detection of manifold regularized broad learning system based on LU decomposition. Journal of Supercomputing, 79(18), 20600–20648.
Ma, J., Liu, Q., Zhang, Z., & Gu, P. (2024). Research on personalized recommendation of teaching resources based on joint probability matrix decomposition model and CNN improvement algorithm. Applied Mathematics and Nonlinear Sciences, 9(1), 1–16.
Marco, A., Martínez, J. J., & Viaña, R. (2024). Accurate bidiagonal decomposition of Lagrange–Vandermonde matrices and applications. Numerical Linear Algebra with Applications, 31(1), 1–16.
Muñoz-Ramírez, D. O., García-Salgado, B. P., Ponomaryov, V., Reyes-Reyes, R., Sadovnychiy, S., & Cruz-Ramos, C. (2021). A color image watermarking framework for copyright protection of stereo images based on binocular just noticeable difference and LU decomposition. Multimedia Tools and Applications, 80(9), 13707–13734.
Nawaty et al. (2022). Dekomposisi Qr dengan matriks. Transformasi Householder, 11(2), 229–238.
Ni, Y. Y., Wu, F. Y., & Yang, H. Z. (2024). An automatic threshold OMP algorithm based on QR decomposition for magnetic resonance image reconstruction. Circuits, Systems, and Signal Processing, 43(6), 3697–3717.
Respondek, J. (2022). Matrix black box algorithms - a survey. Bulletin of the Polish Academy of Sciences: Technical Sciences, 70(2), 1–8.
Savenkov, S., Oberemok, Y., Kolomiets, I., Muttiah, R., & Kurylenko, R. (2024). Mueller-polarimetry of barley leaves ii: mueller matrix decompositions. Photonics, 11(76), 1-27.
Shmueli, S., Drineas, P., & Avron, H. (2024). Low-rank updates of matrix square roots. Numerical Linear Algebra with Applications, 31(1), 1–15.
Sinurat et al. (2022). Implementation of singular value decomposition for adding watermark on text Documents. Infokum, 10(2), 750–757.
Su, Q., Niu, Y., Zou, H., & Liu, X. (2013). A blind dual color images
watermarking based on singular value decomposition. Applied Mathematics and Computation, 219(16), 8455–8466.
Sun, L., Wu, B., & Ye, T. (2020). Design and VLSI implementation of a reduced-complexity sorted QR decomposition for high-speed MIMO systems. Electronics (Switzerland), 9(10), 1–15.
Xu, S., & Pan, C. (2024). Deep learning algorithm-oriented blended teaching in secondary school mathematics courses in ethnic areas. Applied Mathematics and Nonlinear Sciences, 9(1), 1–14.
Yang, Q., & Peng, X. (2023). A fast calculation method for sensitivity analysis using matrix decomposition technique. Axioms, 12(2), 1–13.
Zhu, Y., & Wei, Y. (2022). Tensor LU and QR decompositions and their randomized algorithms. Computational Mathematics and Computer Modeling with Applications (CMCMA), 1(1), 1–16.
Zhuang, Z., Zhuang, Z., & Wang, T. (2024). Medical image encryption algorithm based on a new five-dimensional multi-band multi-wing chaotic system and QR decomposition. Scientific Reports, 14(1), 1–17.
DOI: https://doi.org/10.17509/jem.v12i2.75857
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Mathematics Program Study, Universitas Pendidikan Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.