Pemodelan IPM di Provinsi Bengkulu dengan Pendekatan Metode Geographically Weighted Regression (GWR) dan Geographically Temporally Weighted Regression (GTWR)

Cinta Rizki Oktarina, Jose Rizal, Fachri Faisal, Qhiky Lioni Tasyah, Stevy Cahya Pratiwi

Abstract


The Geographically Temporally Weighted Regression (GTWR) method is a development of the Geographically Weighted Regression (GWR) method, namely by considering elements of location and time. This research aims to obtain the best estimation results between the GWR and GTWR methods applied to human development index data in Bengkulu Province for 2018–2022. There are three variables modelled, namely three independent variables: life expectancy, average years of schooling, and open unemployment rate, while the dependent variable is the Human Development Index. The research results show that the three independent variables significantly influence the dependent variable and have spatial heterogeneity in the modelled data. In addition, the coefficient of determination value for GTWR is 99.98%, while for GWR it is 99.74%, so the GTWR method is better for modelling the Human Development Index in Bengkulu Province for 2018–2022.

Keywords: Coefficient of Determination, GWR Method, GTWR Method, Human Development Index, Spatial heterogeneity.


Abstrak

Metode Geographically Temporally Weighted Regression (GTWR) merupakan pengembangan dari metode Geographically Temporally Weighted Regression (GWR), yakni dengan mempertimbangkan unsur lokasi dan waktu. Penelitian ini bertujuan untuk mendapatkan hasil estimasi terbaik antar metode GWR dan GTWR yang diterapkan pada data indeks pembangunan manusia di Provinsi Bengkulu Tahun 2018-2022. Terdapat tiga variabel yang dimodelkan, yakni tiga variabel bebas: angka harapan hidup, rata-rata lama sekolah, dan tingkat pengangguran terbuka, sedangkan variabel takbebas adalah Indeks Pembangunan Manusia. Hasil penelitian menunjukkan bahwa ketiga variabel bebas tersebut mempengaruhi variabel takbebas secara signifikan dan terdapat sifat heterogenitas spasial pada data yang dimodelkan. Sebagai tambahan, nilai koefisien determinasi untuk GTWR sebesar 99.98%, sedangkan untuk GWR sebesar 99.74%, jadi metode GTWR lebih baik untuk memodelkan Indeks Pembangunan Manusia di Provinsi Bengkulu tahun 2018-2022.


Keywords


Heterogenitas Spasial, Indeks Pembangunan Manusia, Koefisien Determinasi, Metode GTWR, Metode GWR.

Full Text:

PDF

References


Chu, H. J., Kong, S. J., & Chang, C. H. (2018). Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression. International Journal of Applied Earth Observation and Geoinformation, 65, 1–11.

Corrado, L., & Fingleton, B. (2012). Where is the economics in spatial econometrics?. Journal of Regional Science, 52(2), 210-239.

Fotheringham, A. S., Charlton, M. E., & Brunsdon, C. (1998). Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and planning A, 30(11), 1905-1927.

Gough, I. (2015). Climate change and sustainable welfare: the centrality of human needs. Cambridge Journal of Economics, 39, 1191–1214.

Huang, B., Wu, B., & Barry, M. (2010). Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24(3), 383-401.

Liu, J., Zhao, Y., Yang, Y., Xu, S., Zhang, F., Zhang, X., ... & Qiu, A. (2017). A mixed geographically and temporally weighted regression: Exploring spatial-temporal variations from global and local perspectives. Entropy, 19(2), 1-20.

Mei, C. L., Zhu, J. X., & Zhou, Y. Q. (2006). Geographically weighted regression based on multivariate adaptive regression splines. Geographical Research, 25(2), 285-294.

Mennis, J. (2006). Mapping the results of geographically weighted regression. The Cartographic Journal, 43(2), 171–179.

Schwertman, N. C., Owens, M. A., & Adnan, R. (2004). A simple more general boxplot method for identifying outliers. Computational Statistics & Data Analysis, 47(1), 165-174.

Wu, D. (2020). Spatially and temporally varying relationships between ecological footprint and influencing factors in China’s provinces using Geographically Weighted Regression (GWR). Journal of Cleaner Production, 261, 121089.

Yu, D., Wei, Y. D., & Wu, C. (2007). Modeling spatial dimensions of housing prices in Milwaukee, WI. Environment and Planning B: Planning and Design, 34(6), 1085-1102.




DOI: https://doi.org/10.17509/jem.v12i1.66629

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mathematics Program Study, Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Google Scholar Logo PNG vector in SVG, PDF, AI, CDR format