Application Bootstrap to Estimate the Confidence Intervals of NO2 Levels in the Kriging Method
Abstract
NO2 levels must be monitored continuously to minimize negative environmental impacts. In general, the estimation of NO2 levels using the Kriging method produces point estimates. In this study, we developed an interval estimate for NO2 levels by applying the quasi-random Bootstrap resampling method. We used data on NO2 levels in 14 areas in South Tangerang City in 2021. The data is stationary, so the appropriate estimation method is ordinary kriging. To develop the 95% confidence interval, we applied 1000 resamplings to the Bootstrap. The estimation results show that the lowest 95% confidence interval for NO2 levels is in the range of 25.23123 – 27.82351 μgr/m3 in Pamulang Timur Village, and the highest 95% confidence interval for NO2 levels is in the range of 45.59886 – 46.08371 μgr/m3 in the Ciater Village.
Keywords: Bootstrap, Confidence Interval, Kriging, Quasi-Random.
Abstrak
Kadar NO2 perlu dipantau secara terus menerus untuk meminimalisir dampak negatif terhadap lingkungan. Pada umumnya, estimasi kadar NO2 menggunakan metode kriging menghasilkan estimasi titik. Pada penelitian ini akan dikembangkan estimasi selang untuk kadar NO2 dengan mengaplikasikan metode resampling quasi-random bootstrap. Data yang digunakan adalah kadar NO2 pada 14 wilayah di Kota Tangerang Selatan tahun 2021. Data tersebut stasioner sehingga metode estimasi yang digunakan adalah ordinary kriging. Untuk pembentukan selang kepercayaan 95% diaplikasikan 1000 resampling pada metode bootstrap. Hasil estimasi menunjukkan bahwa selang kepercayaan kadar NO2 terkecil berada pada rentang nilai 25,23123 – 27,82351 yang berlokasi di Kelurahan Pamulang Timur dan selang kepercayaan kadar NO2 terbesar berada pada rentang 45,59886 – 46,08371 yang berlokasi di Kelurahan Ciater.
Keywords
Full Text:
PDFReferences
Ajmal, Z., ul Haq, M., Naciri, Y., Djellabi, R., Hassan, N., Zaman, S., ... & Qadeer, A. (2022). Recent advancement in conjugated polymers based photocatalytic technology for air pollutants abatement: Cases of CO2, NOx, and VOCs. Chemosphere, 308, 136358.
Beers, W., & Kleijinen, J. (2003). Kriging for interpolation in random simulation. Journal of the Operational Research Society, 54(3), 252-262.
Bertero, C., Léon, J.-F., Trédan, G., Roy, M., & Armengaud, A. (2020). Urban-scale NO2 prediction with sensors aboard bicycles: a comparison of statistical methods using synthetic observations. Atmosphere, 11(9), 1014.
Darmawan, R. (2018). Analisis risiko kesehatan lingkungan kadar NO2 serta keluhan kesehatan petugas pemungut karcis tol. Jurnal Kesehatan Lingkungan, 10(1), 116-126.
Krecl, P., Harrison, R. M., Johansson, C., Targino, A. C., Beddows, D., Ellerman, T., . . . Ketzel, M. (2021). Long-term trends in nitrogen oxides concentrations and on-road vehicle emission factors in Copenhagen, London and Stockholm. Environmental Pollution, 290, 118105.
Lee, C., & Lee, J. (2019). National NO2 exposure models for measuring its impact on vulnerable people in the US metropolitan areas. Environmental Monitoring and Assessment, 191, 1-19.
Manusmare, A., & Gajarlawar, P. J. (2023). Advance pollution monitoring system with health critical gas indexing using IOT. International Journal of Engineering Applied Sciences and Technology, 8(3), 53-63.
Matthaios, V. N., Rooney, D., Harrison, R. M., Koutrakis, P., & Bloss, W. J. (2022). NO2 levels inside vehicle cabins with pollen and activated carbon filters: A real world targeted intervention to estimate NO2 exposure reduction potential. The Science of the Total Environment, 860(2), 160395.
Öztürk, E. N., & Öztürk, M. (2023). Evaluation of the effect of NO2 levels on mortality in four key cities of Türkiye between 2017-2019. Journal of Experimental and Clinical Medicine 40(1), 66-71.
Park, S., & Ko, D. (2018). Investigating the effects of the built environment on PM2.5 and PM10: A case study of Seoul Metropolitan city, South Korea. Sustainability, 10(12), 4552.
Prasetyo, A. D., Bashit, N., Yusuf, M., & Rassarandi, F. D. (2023). Analysis the effect of large-scale social restrictions on air quality in DKI Jakarta. Journal of Applied Geospatial Information, 7(2), 964-973.
Quackenboss, J., Spengler, J., Kanarek, M., Letz, R., & Duffy, C. (1986). Personal exposure to nitrogen dioxide: Relationship to indoor/outdoor air quality and activity patterns. Environmental Science & Technology, 20(8), 775–783.
Ryan, P., Spengler, J., & Halfpenny, P. (1988). Sequential box models for indoor air quality: Application to airliner cabin air quality. Atmospheric Environment, 22(6), 1031–1038.
Sari, K. N., Pasaribu, U. S., Neswan, O., & Permadi, A. K. (2015). Estimation of the parameters of isotropic semivariogram model through bootstrap. Applied Mathematical Sciences, 9(103), 5123-5137.
Scott, D. W. (2010). Scott's rule. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 497-502.
Tang, J., McNabola, A., & Misstear, B. (2020). The potential impacts of different traffic management strategies on air pollution and public health for a more sustainable city: A modelling case study from Dublin, Ireland. Sustainable Cities and Society, 60, 102229.
Widya, L. K., Hsu, C.-Y., Lee, H.-Y., Jaelani, L. M., Lung, S.-C. C., Su, H.-J., & Wu, C.-D. (2020). Comparison of spatial modelling approaches on PM10 and NO2 concentration variations: A case study in Surabaya City, Indonesia. International Journal of Environmental Research and Public Health (IJERPH), 17(23), 8883.
Wu, S., Huang, B., Wang, J., He, L., Wang, Z., Yan, Z., . . . Du, Z. (2021). Spatiotemporal mapping and assessment of daily ground NO2 concentrations in China using high-resolution TROPOMI retrievals. Environmental Pollution, 273(5), 116456.
Zheng, J., Jiang, P., Qiao, W., Zhu, Y., & Kennedy, E. (2016). Analysis of air pollution reduction and climate change mitigation in the industry sector of Yangtze River Delta in China. Journal of Cleaner Production, 114, 314-322.
Zhu, F., Ding, R., Lei, R., Cheng, H., Liu, J., Shen, C., & Cao, J. (2019). The short-term effects of air pollution on respiratory diseases and lung cancer mortality in Hefei: A time-series analysis. Respiratory Medicine, 146, 57–65.
DOI: https://doi.org/10.17509/jem.v11i2.66241
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Mathematics Program Study, Universitas Pendidikan Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.