Aplikasi Algoritma Simulated Annealing untuk Pemodelan Fluktuasi Temperatur di Lapisan Tropopause
Abstract
Atmospheric conditions influence various sectors of human activity, so it is important to study the dynamics of the atmospheric layers, especially those related to temperature fluctuations. The aim of this research is to investigate the model of temperature fluctuations in the tropopause layer (at an altitude of 17 km) by determining the wave amplitude and phase parameters. The method for obtaining parameters is defined as simulated annealing inversion, which is a simulation of finding solutions at global critical points. The data used in this study are temperature at 17 km, which retrieved from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Mission #2 GNSS radio occultation satellite during April–May 2021. The results of the annealing simulation show that the amplitude and phase parameters of atmospheric waves in the tropopause layers vary between 3.4–23.86 K and 7.3–52.5°, respectively. The simulation model shows that the temperature spreads from west to east and fluctuates between –25 and 25 K.
Keywords: Atmospheric Waves, Simulated Annealing, Temperature, Tropopause Layer.
Abstrak
Kondisi atmosfer mempengaruhi berbagai sektor kegiatan manusia, sehingga studi tentang dinamika di lapisan atmosfer penting dilakukan terutama terkait dengan fluktuasi temperatur. Tujuan dari penelitian ini memodelkan fluktuasi temperatur di lapisan tropopause (ketinggian 17 km) dengan mencari nilai parameter amplitudo dan fasa gelombang yang mendekati data pengamatan. Metode pencarian parameter tersebut adalah inversi simulated annealing, yaitu simulasi pencarian solusi pada titik kritis global. Data penelitian ini adalah variabel temperatur di 17 km yang bersumber dari pengamatan satelit Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) Mission #2 GNSS radio occultation selama periode April-Mei 2021. Hasil simulasi annealing menunjukkan parameter amplitudo dan fasa gelombang atmosfer di lapisan tropopause berturut-turut bervariasi pada rentang 3,4–23,86 K dan 7,3°–52,5°. Model simulasi menunjukkan perambatan temperatur dari arah barat ke timur dan berfluktuasi pada selang –25 sampai 25 K.
Keywords
Full Text:
PDFReferences
Akbar, A. F., Nugraha, A. D., Sule, M. R., & Juanda, A. A. (2012). Penentuan hiposenter menggunakan simulated annealing dan guided error serta penentuan model kecepatan gelombang seismik 1-D pada lapangan “Geothermal”. Jurnal Geofisika, 13(1), 16-22.
Andarini, D. F., & Noersomadi, N. (2020). Deteksi pengaruh gelombang Kelvin pada fluktuasi uap air di tropopause menggunakan model inversi. Majalah Geografi Indonesia, 34(1), 63-71.
Anthes, R. A. (2011). Exploring earth's atmosphere with radio occultation: Contributions to weather, climate and space weather. Atmospheric Measurement Techniques, 4(6), 1077-1103.
Bock, Y., Prawirodirdjo, L., & Melbourne, T. I. (2004). Detection of arbitrarily large dynamic ground motions with a dense high‐rate GPS network. Geophysical Research Letters, 31(6), 1-4.
Fueglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., & Mote, P. W. (2009). Tropical tropopause layer. Reviews of Geophysics, 47(1), 1-31.
Halim, G. R., Utama, W., & Mariyanto, M. (2020). Uji lokasi hiposenter Mikro-Earthquake (MEQ) dengan metode inversi Simulated Annealing pada lapangan panas bumi “XX”. Jurnal Geosaintek, 6(2), 71-76.
Hasebe, F., Aoki, S., Morimoto, S., Inai, Y., Nakazawa, T., Sugawara, S., ... & Sugidachi, T. (2018). Coordinated upper-troposphere-to-stratosphere balloon experiment in Biak. Bulletin of the American Meteorological Society, 99(6), 1213-1230.
Holton, J. R. (1973). An introduction to dynamic meteorology. American Journal of Physics, 41(5), 752-754.
Kim, J., & Son, S. W. (2012). Tropical cold-point tropopause: Climatology, seasonal cycle, and intraseasonal variability derived from COSMIC GPS radio occultation measurements. Journal of Climate, 25(15), 5343-5360.
Panggabean, H. P. (2004). Algoritma Simulated Annealing untuk pembentukan sel mesin dengan dua tipe fungsi objektif dan dua cara pembatasan sel. Jurnal Teknik Industri, 6(1), 10-24.
Randel, W. J., & Wu, F. (2005). Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. Journal of Geophysical Research: Atmospheres, 110(D3), 1-13.
Scherllin-Pirscher, B., Randel, W. J., & Kim, J. (2017). Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements. Atmospheric Chemistry and Physics, 17(2), 793-806.
Tsai, H. F., Tsuda, T., Hajj, G. A., Wickert, J., & Aoyama, Y. (2004). Equatorial Kelvin waves observed with GPS occultation measurements (CHAMP and SAC-C). Journal of the Meteorological Society of Japan, 82(1B), 397-406.
Weiss, J. P., Schreiner, W. S., Braun, J. J., Xia-Serafino, W., & Huang, C. Y. (2022). COSMIC-2 Mission summary at three years in orbit. Atmosphere, 13(9), 1409.
DOI: https://doi.org/10.17509/jem.v11i1.52550
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Mathematics Program Study, Universitas Pendidikan Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.