Karakteristik estimator Analisis Komponen Utama untuk mengestimasi Model Variabel Laten menggunakan metode High-Dimensional AIC
Abstract
Makalah ini bertujuan untuk mengetahui sifat estimator Analisis Komponen Utama (AKU) untuk mengestimasi model variabel laten. Metode yang digunakan adalah metode High-Dimensional AIC (HAIC) dengan simulasi data berdistribusi Bernoulli. Tahapannya adalah: (1) menentukan matriks AKU; (2) membuat model estimator AKU untuk mengestimasi variabel laten dengan menggunakan HAIC; (3) mensimulasikan data distribusi Bernoulli dengan pengulangan 1.000.748 kali. Hasil simulasi menunjukkan model estimator AKU bekerja dengan baik.
Keywords
Full Text:
PDFReferences
Bambang, A. P., & Lukman, S. (2016). The Characteristic of Correspondence Analysis Estimator to Estimate Latent Variable Model Method Using High-Dimensional AIC. Mathematics, Science, and Computer Science Education (MSCEIS 2015), 1708(1), 060005.
Enomoto, R., Sakurai, T., & Fujikoshi, Y. (2013). Consistency of AIC and its Modification in the Growth Curve Model Under a Large-(q, n) framework. SUT Journal of Mathematics, 49(2), 93-107.
Greenacre, M. J. (1994), Theory and Application of Correspondence Analysis, London: Academic Press.
Lynn, H. S., & McCulloch, C. E. (2000). Using Principal Component Analysis and Correspondence Analysis for Estimation in Latent Variable Models. Journal of the American Statistical Association, 95(450), 561-572.
Ogura, T., & Fujikoshi, Y. (2013, August). Estimation of Dimension Based on Certain Information Criterion in Correspondence Analysis. In Procceding 59 th ISI World Statistics Congress (pp. 5361-5365).
Wegelin, J. A., Packer, A., & Richardson, T. S. (2006). Latent Models for Cross-Covariance. Journal of multivariate analysis, 97(1), 79-102.
Xiong, K., & Perros, H. (2009, July). Service Performance and Analysis in Cloud Computing. In 2009 Congress on Services-I (pp. 693-700). IEEE.
Yang, B., Tan, F., Dai, Y. S., & Guo, S. (2009, December). Performance Evaluation of Cloud Service Considering Fault Recovery. In IEEE International Conference on Cloud Computing (pp. 571-576). Springer, Berlin, Heidelberg.
DOI: https://doi.org/10.17509/jem.v9i1.33391
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Jurnal EurekaMatika
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.