Metode Peramalan Mortalita Menggunakan Metode Lee-Carter

Ima Nursaadah, Entit Puspita, Rini Marwati

Abstract


ABSTRAK  Skripsi ini membahas mengenai aplikasi Model Lee-Carter untuk peramalan laju mortalita di Australia. Data yang digunakan adalah data peluang mortalita Australia tahun 1921-2008, dimana usia yang digunakan adalah 0-109 tahun. Central death rates  diasumsikan berbentuk linear dan eksponensial. Selanjutnya peluang mortalita diestimasi menggunakan Singular Value Deomposition (SVD) dan dibentuk kembali menjadi sebuah tabel mortalita Model Lee-Carter. Selanjutnya, akan diramalkan indeks kematian menggunakan ARIMA (0,1,1) untuk tahun 2009-2011. Dengan asumsi  dan  konstan, akan dibentuk tabel mortalita tahun 2009-2011. Hasil dari peramalan tabel mortalita tahun 2009-2011 memberikan hasil peramalan yang baik. Diperoleh pula bahwa asumsi eksponensial untuk central death rates memberikan error yang lebih kecil dibandingkan dengan asumsi linear.

Kata kunci : mortalita, central death rates, peramalan, Lee-Carter

ABSTRACT This paper discusses about the application of the Lee-Carter Model to forecasting mortality rates in Australia. These rates are available for the periode that goes from 1921-2008, which using 0-109 ages. Central death rates assumed has linear and exponensial form. The probability of mortallity is estimated using The Singular Value Decomposition (SVD) and rebuilt to a mortality table Lee-carter model. Next, ARIMA (0,1,1) used for forecast the mortality indeks for the time periode that goes from 2009-2011 in order to project. Assuming both of  and  are constant. Results of forecasting mortality tables for 2009-2011 shows that exponential assumption for central death rates better than the linear assumption.

Keyword : mortality, central death rates, forecasting, Lee-Carter


Full Text:

PDF


DOI: https://doi.org/10.17509/jem.v3i1.11194

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Ima Nursaadah, Entit Puspita, Rini Marwati





Google Scholar Logo PNG vector in SVG, PDF, AI, CDR format