Predicting Solar Flares Using Data Products Vector Magnetic SDO/HMI dan Random Ferns
Abstract
Keywords
Full Text:
PDFReferences
Ahmed, O. W., Qahwaji, R., Colak, T., Higgins, P. A., Gallagher, P. T., and Bloomfield, D. S. (2013). Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Solar Physics, 283, 157-175.
Barnes, G., Leka, K. D., Schumer, E. A., and Della‐Rose, D. J. (2007). Probabilistic forecasting of solar flares from vector magnetogram data. Space Weather, 5(9).
Bloomfield, D. S., Higgins, P. A., McAteer, R. J., and Gallagher, P. T. (2012). Toward reliable benchmarking of solar flare forecasting methods. The Astrophysical Journal Letters, 747(2), L41.
Bobra, M. G., and Couvidat, S. (2015). Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. The Astrophysical Journal, 798(2), 135.
Boucheron, L. E., Al-Ghraibah, A., and McAteer, R. J. (2015). Prediction of solar flare size and time-to-flare using support vector machine regression. The Astrophysical Journal, 812(1), 51.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Contarino, L., Zuccarello, F., Romano, P., Spadaro, D., Guglielmino, S. L., and Battiato, V. (2009). Flare forecasting based on sunspot-groups characteristics. Acta Geophysica, 57, 52-63.
Emslie, A. G., Dennis, B. R., Shih, A. Y., Chamberlin, P. C., Mewaldt, R. A., Moore, C. S., ... and Welsch, B. T. (2012). Global energetics of thirty-eight large solar eruptive events. The Astrophysical Journal, 759(1), 71.
Ghezzi, I., and Ruggles, C. (2007). Chankillo: a 2300-year-old solar observatory in coastal Peru. Science, 315(5816), 1239-1243.
Grätzel, M. (2007). Photovoltaic and photoelectrochemical conversion of solar energy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1853), 993-1005.
Li, R., Cui, Y., He, H., and Wang, H. (2008). Application of support vector machine combined with K-nearest neighbors in solar flare and solar proton events forecasting. Advances in Space Research, 42(9), 1469-1474.
Liu, C., Deng, N., Wang, J. T., and Wang, H. (2017). Predicting solar flares using SDO/HMI vector magnetic data products and the random forest algorithm. The Astrophysical Journal, 843(2), 104.
Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Watari, S., and Ishii, M. (2017). Solar flare prediction model with three machine-learning algorithms using ultraviolet brightening and vector magnetograms. The Astrophysical Journal, 835(2), 156.
Priest, E. R., and Forbes, T. G. (2002). The magnetic nature of solar flares. The Astronomy and Astrophysics Review, 10(4), 313-377.
Qahwaji, R., and Colak, T. (2007). Automatic short-term solar flare prediction using machine learning and sunspot associations. Solar Physics, 241, 195-211.
Ruban, A. V. (2015). Evolution under the sun: Optimizing light harvesting in photosynthesis. Journal of experimental botany, 66(1), 7-23.
Ternullo, M., Contarino, L., Romano, P., and Zuccarello, F. (2006). A statistical analysis of sunspot groups hosting M and X flares. Astronomische Nachrichten: Astronomical Notes, 327(1), 36-43.
Yu, D., Huang, X., Hu, Q., Zhou, R., Wang, H., and Cui, Y. (2009). Short-term solar flare prediction using multiresolution predictors. The Astrophysical Journal, 709(1), 321.
Yuan, Y., Shih, F. Y., Jing, J., and Wang, H. M. (2010). Automated flare forecasting using a statistical learning technique. Research in Astronomy and Astrophysics, 10(8), 785.
DOI: https://doi.org/10.17509/jcs.v4i2.71184
Refbacks
- There are currently no refbacks.