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A B S T R A C T   A R T I C L E   I N F O 

Solar flares (SFs) are the most powerful bursts of energy in 
the solar system that often have a bad effect on space 
weather. Until now, the cause of its appearance is not known 
for sure. Nevertheless, SFs are known to have magnetic 
properties attached to them. Therefore, understanding the 
configuration of the magnetic field on the sun plays an 
important role in SFs prediction efforts. Using SFs flux data 
recorded by X-ray Sensors on the Geostationary Operational 
Environmental Satellite (GOES) which is mapped with 13 
parameters of the magnetic vector data of the solar 
photosphere layer recorded by the Helioseismic and 
Magnetic Imager (HMI) at the Solar Dynamic Observatory 
(SDO) and the Machine Learning (ML) Random Ferns (RFe) 
algorithm,  This study tries to predict the emergence of 
multiclass SFs (B, C, M, and X) along with binary SFs (BC and 
MX). This study uses data from May 1, 2010 to May 10, 2020, 
with a total of 30 classes X, 443 classes M, 1032 classes C, 
751 classes B, 473 classes MX, and 1783 classes BC. This 
study also applies the oversampling method to handle the 
imbalanced nature of the data on SFs data. Overall, it can be 
seen that predicting the occurrence of SFs using RFe is a valid 
effort. The highest average scores achieved by this study for 
sensitivity/recall, precision, and True Skill Statistics (TSS) in 
multiclass SFs were 74.4%, 50.3%, and 58.7%, respectively; 
and in binary SFs are 87.7%, 77.7%, and 72.8%. 
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1. INTRODUCTION 
 

The sun plays an important role for life on earth. The energy it emits is the main source for 
plants to photosynthesize (Ruban, 2015), become raw materials for electricity conversion 
through solar panels (Grätzel, 2007), and become a source of light for animal and human 
vision. In the early days of human civilization, the sun even received special reverence with 
the manifestation of structures such as Newgrange in Ireland, Stonehenge in England, and 
Chankillo in Peru (Ghezzi and Ruggles, 2007). Various efforts to observe the sun and related 
phenomena continue to be carried out, including one of them is Solar Flares (SFs). 

SFs are the most powerful eruption phenomenon in the solar system because they can 
release as much as 1032 ergs of energy (Emslie et al., 2012). This energy is ten million times 
greater than the energy released by volcanic eruptions . The radiation it emits is almost across 
the entire electromagnetic spectrum, ranging from 0.002 Å (2 ×10-11 cm, 6.1 MeV) to more 
than 10 km (106 cm, 30 kHz). This SFs phenomenon is also known to have a significant 
negative impact on the magnetosphere, atmosphere, and the environment inside the earth, 
such as causing electronic damage to spacecraft, radio communication interference, power 
network breaks, damage to transformers, blocking radar operations, and even damaging 
submarine cable networks. A study from the National Research Council of the United States 
in 2008 even predicted that if the SFs (Carrington Event) event like in 1859 hit the earth again, 
the losses that would be experienced by global civilization would be 2 trillion US dollars. 

The magnitude of the impact that SFs can cause has prompted many researchers to find 
out about how SFs are formed and what factors underlie their emergence. Although the 
mechanism of energy release in SFs is not yet fully understood, SFs are known to have 
magnetic properties (Priest and Forbes, 2002). Therefore, the study of the configuration of 
the magnetic field in the sun's atmosphere is very important to understand and predict SFs 
(Bobra and Couvidat, 2015). Until now, one of the instruments that continuously observes 
and records the sun's magnetic activity is the Helioseismic and Magnetic Imager (HMI) on the 
Solar Dynamic Observatory (SDO). Launched on February 11, 2010, SDO then orbited on a 
Geosynchronous Orbit (GSO) with an inclination angle of 28° to the longitude of a station 
dedicated exclusively to SDO in New Mexico.  This makes SDO with its HMI instrument one of 
the producers of solar magnetic field observation data that summarizes almost the entire 
24th solar cycle. 

Using the assumption that the data produced by HMI continues to increase, this study then 
chooses Random Ferns (RFe) as an algorithm to study and predict the occurrence of SFs. RFe 
is used to create an algorithm that still refers to the ensemble nature of Random Forest (RF) 
(Breiman, 2001), but is simpler. The implementation of Naive Bayesian Classification in RFe 
itself is known to optimally handle many features which is the key to increasing the level of 
classification. In this study, the implementation of RFe will be used to predict SFs which are 
divided into two scenarios, namely multiclass SFs and binary SFs. Both scenarios are 
adaptations of previous studies and at the same time a form of tuning in the use of RFe. In 
addition, this study also uses an oversampling method on training data to handle the 
imbalanced trait in SFs data. 

2. PENELITIAN TERKAIT 
 

Efforts to predict the emergence of SFs are broadly divided into two approaches, namely 
statistics (Barnes et al., 2007; Contarino et al., 2009; Ternullo et al., 2006) and Machine 
Learning (Boucheron et al., 2015; Li et al., 2008; Nishizuka et al., 2017; Qahwaji and Colak, 
2007; Yu et al., 2009). Reviewing the prediction efforts with a statistical approach, in his 
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research Barnes et al (2007) using ground-based vector magnetic field data obtained from the 
University of Hawai'i Imaging Vector Magnetograph. Barnes et al (2007) then applied a 
statistical discriminant analysis approach to predict the occurrence of SFs. Although the data 
used only covered a portion of a single solar cycle, the results showed performance 
comparable to the Bayesian approach and to the methods used by the Space Environment 
Center (SEC) of the United States. 

Using solar magnetic vector field data sourced from SDO/HMI for four years and the ML 
Support Vector Machine (SVM) algorithm, Borba and Couvidat (2015) selected 25 parameters 
in 2071 Active Regions (ARs) and continued with the creation of a model to predict the 
occurrence of M and X classes in SFs (with M ≥ M1.0). Unlike other similar studies, which 
generally use ground-based data, this study is the first time that vector magnetogram data 
sourced from instruments in space and in large quantities is used to predict the occurrence 
of SFs. Borba and Couvidat (2015) then evaluated the model that had been created with an 
emphasis on TSS metrics and obtained relatively good results. 

In contrast to Borba and Couvidat (2015), Liu et al (2017) conducted research to predict 
the occurrence of SFs using the ML Random Forest (RF) algorithm. Using the same data source 
as Borba and Couvidat (2015), Liu et al (2017) research used solar magnetic vector data in the 
range of May 2010-December 2016. The data is then selected based on the time of the last 
appearance of each day. After that, the undersampling method was used to handle the 
imbalanced nature of SFs data. Another thing that distinguishes the research of Liu et al 
(2017) from the research of Borba and Couvidat (2015) is the addition of scenarios from the 
predicted class, namely with the threshold ≥ B1.0 which has implications for the addition of 
multiclass scenarios (B, C, M, and X). Overall, there are two SFs prediction scenarios in Liu  et 
al (2017) research  , namely multiclass SFs (B, C, M, and X) and binary SFs (BC and MX). The 
conclusion of the research of Liu et al (2017) is that the use of HMI and RF parameters to 
predict SFs is a valid method and is able to provide good results. 

3. METHODS 
 

The data in this study consisted of flux data of SFs detected in the environment around the 
earth which was mapped with magnetic vector data on the appearance of SFs in the sun. SFs 
flux data in the environment around the earth is continuously detected by X-ray Sensors (XRS) 
found on the Geostationary Operational Environmental Satellite (GOES). Meanwhile, 
magnetic vector data is a data product from HMI instruments in SDO. Mapping flux SFs with 
magnetic vector data was carried out using the National Oceanic and Atmospheric 
Administration (NOAA) AR Numbers-HMI Active Region Patches (HARPs) Numbers mapping 
dictionary issued by the Joint Science Operations Center (JSOC) of Stanford University. 

This study uses recommendations Borba and Couvidat (2015) about 13 parameters that 
have significance to the emergence of SFs. These 13 parameters are a combination of two 
data series contained in JSOC, namely hmi. SHARPs and cgem. Lorentz. The data is then 
transformed in stages as shown in Table 1. The details of the 13 parameters are found in Table 
2. There are a total of 2256 SFs data used in this study with a composition of 30 class X, 443 
class M, 1032 class C, and 751 class B for multiclass SFs; and 473 class MX and 1783 class BC 
for binary SFs. 

 

 

Table 1. Stages of SFs data transformation. 
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Transformation process Description of the process 
Labeling data SFs In multiclass SFs scenarios, classes are simplified based on the letters of the 

class detected by XRS. For example, if an SF has class X5.0, it will be 
simplified to class X only. There are four classes in this scenario, namely B, 
C, M, and X. Meanwhile, in the SFs binary scenario, data with class B and 
class C is converted to class BC; and class M and class X were changed to 
class MX. 

SFs data cleanup Rows with one or more missing values from all 13 magnetic vector 
parameters are removed and not included in the next stage. 

Daily SFs data selection SFs data is selected based on the largest class that appears every day, except 
for class M and class X. 

Table 2. The 13 parameters of the magnetic vector along with the source, description, and 
formula adapted from Borba and Couvidat (2015) 

Magnetic Field 
Parameters 

Source Description Formula 

ABSNJZH hmi.SHARPs The absolute value of the net 
current helicity  

AREA_ACR hmi.SHARPs Areas of the strong pixel field in AR 
 

EPSZ cgem.Lorentz Number of Z-components of the 

normalized Lorentz force 
 

MEANPOT hmi.SHARPs Average photospherical magnet-
free energy 

 

R_VALUE hmi.SHARPs Amount of flux near the polarity 
inversion line  

SAVNCPP hmi.SHARPs Number of net current modulus per 
polarity  

SHRGT45 hmi.SHARPs Area with an angle that shifts more 
than 45 degrees  

TOTBSQ cgem.Lorentz Total force of Lorentz force 
 

TOTFZ cgem.Lorentz Total Z-components of the Lorentz 
style 

 

TOTPOT hmi.SHARPs Total photosphere magnet-free 
energy density 

 

TOTUSJH hmi.SHARPs Total unidentified helix currents 
 

TOTUSJZ hmi.SHARPs Total unidentified vertical currents 
 

USFLUX hmi.SHARPs Total unidentified flux 
 

After going through the data preprocessing stage, the next stage is the folding creation 
stage. At this stage, the data is formed into 5 folds, which means that 80% of the data will be 
training data, while 20% of the data will be test data. 

Table 3. Experimental scenarios used in the study. 

Scenario Name Scenario 
Number of ferns 200 ferns, 400 ferns, 600 ferns, 800 ferns, 1000 ferns, and 5000 ferns 

Number of features 3 features, 5 features, 7 features, 9 features, 11 features, and 13 
features 

 
Table 3. (continue) Experimental scenarios used in the study. 
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Scenario Name Scenario 
Sampling techniques Oversample 

Number of classes Multiclass (B, C, M, and X) and binary (BC and MX) 

 
The author does the rep at this stage 10 times, so there will be 10 sets of data for each 

scenario. A series of experiments were then carried out to obtain the most optimal SFs 
prediction models. Based on the characteristics of RFe, the author determines four factors as 
a form of tuning of the modeling process. Details of these four factors are found in After going 
through the data preprocessing stage, the next stage is the folding creation stage. At this 
stage, the data is formed into 5 folds, which means that 80% of the data will be training data, 
while 20% of the data will be test data. 

Table 3 RFe-based SFs prediction model is then built using training data. Once the model 
is formed, the model is then evaluated using test data which is the remaining 20% chunk of 
the overall data. 

Prediction of test data using the model that has been created will produce a list of class 
predictions which are then formed into a confusion matrix. After becoming a confusion 
matrix, the author then also measured the performance of the model that had been formed 
using several metrics, including sensitivity/recall, precision, and TSS. By using these 
measurement metrics, the results of this study can be compared with similar studies such as 
(Borba and Couvidat, 2015; Nishizuka et al., 2017; Liu et al., 2017; Yuan et al., 2010;  
Bloomfield et al., 2012; Ahmed et al., 2013). The details of the entire prediction process using 
RFe are as shown in Figure 1. 

 

Figure 1. Rfe implementation flow for prefixing SFs. 

3. RESULTS AND DISCUSSION 
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There were a total of 3575 experiments that included multiclass SFs and binary SFs 

scenarios. In the multiclass SFs scenario itself, the highest overall accuracy was recorded at 
62.83% with details as shown in Table 4. 

Table 4. The results of the SFs multiclass scenario experiment with the highest overall 
accuracy. 

Description Value 

Overall accuracy 0.6283 

Experiment number on multiclass 

800 ferns 

212 

Number of ferns 800 

Number of features 11 

Number of k-folds 5 

Number of fold 2 

Confusion Matrix 
Criteria B C M X Macro 

average 

Weighted 

average 

Precision 0.619 0.740 0.552 0.182 0.523 0.656 

Sensitivity 0.900 0.454 0.596 0.333 0.571 0.628 

Specificity 0.725 0.865 0.882 0.980 0.863 0.824 

F1-Score 0.734 0.563 0.573 0.235 0.526 0.617 

TSS 0.625 0.319 0.477 0.313 0.434 0.452 

Support 150 207 89 6 452 452 

As for the SFs binary scenario, the highest overall accuracy was recorded at 85.17% with 
details as shown in Table 5. 

Table 5. The results of the SFs binary scenario experiment with the highest overall. 

Description Value 

Overall accuracy 0.8517 

Experiment number on multiclass 

800 ferns 

253 

Number of ferns 400 

Number of features 13 

Number of k-folds 5 

Number of fold 3 

Confusion Matrix 

Criteria BC MX Macro 

average 

Weighted 

average 

Precision 0.948 0.609 0.778 0.876 

Sensitivity 0.860 0.821 0.840 0.852 

Specificity 0.821 0.860 0.840 0.829 

F1-Score 0.902 0.700 0.801 0.859 

TSS 0.681 0.681 0.681 0.681 

Support 357 95 452 452 
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In addition, the plot results from the metrics in the SFs multiclass scenario as shown in 
Figure 2 show that the increase in the number of features results in an upward trend in the 
percentage of the predicted results. This applies to almost every metric used, both macro 
averages and weighted averages. However, the trend of percentage increase from this 
prediction is not linear, because in the multiclass SFs scenario of 800 ferns, 1000 ferns, and 
5000 ferns, the greatest overall accuracy does not fall on the largest number of features. 

 

Figure 2. Line charts containing macro and weighted averages for precision, sensitivity, 
specificity, f1-score, TSS, and accuracy of experimental results for multiclass SFs scenarios. 

This also applies to the SFs binary scenario where the results of the plot metrics show that 
the increase in the number of features results in an upward trend in the percentage of the 
prediction results as shown in Figure 3. The upward trend applies to almost every metric used, 
both macro averages and weighted averages. However, the trend of increasing the 
percentage of this prediction is also not linear, because in the binary SFs scenario of 200 ferns, 
600 ferns, and 800 ferns, the greatest overall accuracy does not fall on the largest number of 
features. 
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Figure 3. A line chart containing macro and weighted averages for precision, sensitivity, 
specificity, f1-score, TSS, and accuracy of experimental results for binary SFs scenarios. 

4. CONCLUSION 
 

Based on the results and discussion of the experiments that have been carried out, it can 
be concluded that the use of RFe to predict the occurrence of SFs using magnetic vector data 
is a valid method. Furthermore, the results of the study also show that the use of RFe with 
SFs data that covers almost the entire 24th solar cycle to predict the occurrence of SFs can 
outperform some aspects of measurement in previous studies. In addition, it can also be seen 
that the addition of the number of features or attributes of magnetic vector data into the 
modeling provides an upward trend in almost all classification performance measurement 
metrics in this study. Overall, although multiclass SFs B, C, M, X, predictions can be made, it 
can be seen that binary SFs BC and MX predictions are more optimal in classifying SFs based 
on magnetic vector data on the sun. 
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