Implementasi Neural Network untuk Mengenali Kepribadian Seseorang Menggunakan Model Big Five Personality Berdasarkan Rating Genre Video Game yang Diberikan oleh Responden

Reyhan Fikri Dzikriansyah, Rosa Ariani Sukamto, Yudi Ahmad Hambali

Abstract


Kepribadian seseorang merupakan hal penting
yang perlu dikenali karena memiliki berbagai kegunaan,
diantaranya ialah untuk melakukan crowdsourcing, memilih
seseorang yang cocok menjadi pemimpin, dan meningkatkan
kemampuan metakognisi guru bahasa. Salah satu machine
learning yang dapat digunakan untuk mengenali kepribadian
seseorang ialah Automatic Personality Recognition (APR).
Pada APR, model kepribadian yang sering digunakan ialah
big five personality. Model big five personality telah diteliti
memiliki korelasi dengan preferensi genre video game yang
berbentuk data kuesioner berskala rating. Neural network
pernah digunakan sebagai algoritma APR dengan data rating
desain karakter video game. Neural network juga telah diteliti
memiliki kinerja yang lebih baik dari teknik statistik standar
untuk data kuesioner berskala rating. Penelitian skripsi ini
membahas tentang APR yang menggunakan data rating
genre video game sebagai fitur, big five personality sebagai
model kepribadian, dan neural network sebagai algoritma.
Data rating genre video game didapat dengan kuesioner
preferensi genre video game dan data big five personality
didapat dengan kuesioner Big Five Inventory Socio-Economic
Panel (BFI-S). Penelitian ini terdiri dari beberapa tahap,
yaitu: (1) Pembuatan Kuesioner; (2) Pengumpulan Data; (3)
Eksperimen; (4) Analisis Hasil. Hasil penelitian ini
menunjukkan bahwa: (1) Fitur rating genre video game
efektif untuk mengenali dimensi kepribadian
conscientiousness dengan RMSE sebesar 0.79459; (2) Neural
network mengeluarkan hasil yang lebih baik dari teknik
statistik standar; (3) Neural network bukanlah metode
terbaik dalam APR menggunakan model big five personality
berdasarkan rating genre video game.


Keywords


Rating Genre Video Game, Preferensi Genre Video Game, Automatic Personality Recognition, Big Five Personality, Big Five Inventory Socio-Economic Panel, Neural Network

Full Text:

PDF

References


A. Vinciarelli dan G. Mohammadi, “A Survey of Personality

Computing,” IEEE Trans. Affect. Comput., vol. 5, no. 3, hal. 273–

, 2014.

M. Z. Tunio et al., “Impact of Personality on Task Selection in

Crowdsourcing Software Development: A Sorting Approach,” IEEE

Access, vol. 5, hal. 18287–18294, 2017.

G. Huszczo dan M. L. Endres, “Gender differences in the

importance of personality traits in predicting leadership selfefficacy,” Int. J. Train. Dev., vol. 21, no. 4, hal. 304–317, 2017.

H. Öz, “The Importance of Personality Traits in Students’

Perceptions of Metacognitive Awareness,” Procedia - Soc. Behav.

Sci., vol. 232, hal. 655–667, 2016.

L. Teijeiro-Mosquera, J. I. Biel, J. L. Alba-Castro, dan D. GaticaPerez, “What your face vlogs about: Expressions of emotion and

big-five traits impressions in youtube,” IEEE Trans. Affect.

Comput., vol. 6, no. 2, hal. 193–205, 2015.

L. Batrinca, N. Mana, B. Lepri, N. Sebe, dan F. Pianesi,

“Multimodal Personality Recognition in Collaborative GoalOriented Tasks,” IEEE Trans. Multimed., vol. 18, no. 4, hal. 659–

, 2016.

C. Segalin, A. Perina, M. Cristani, dan A. Vinciarelli, “The Pictures

We Like Are Our Image: Continuous Mapping of Favorite Pictures

into Self-Assessed and Attributed Personality Traits,” IEEE Trans.

Affect. Comput., vol. 8, no. 2, hal. 268–285, 2017.

F. Rangel, F. González, F. Restrepo, M. Montes, dan P. Rosso,

“PAN@FIRE: Overview of the PR-SOCO Track on Personality

Recognition in SOurce COde,” Lect. Notes Comput. Sci., vol.

, no. 1, hal. 1–19, 2018.

F. Johnsson, “Personality measures under focus: The NEO-PI-R and

the MBTI,” Griffith Univ. Undergrad. Student Psychol. J., vol. 1,

B. Braun, J. M. Stopfer, K. W. Müller, M. E. Beutel, dan B. Egloff,

“Personality and video gaming: Comparing regular gamers, nongamers, and gaming addicts and differentiating between game

genres,” Comput. Human Behav., vol. 55, hal. 406–412, 2016.

N. Peever, D. Johnson, dan J. Gardner, “Personality & video game

genre preferences,” in Proceedings of The 8th Australasian

Conference on Interactive Entertainment Playing the System - IE

’12, 2012, hal. 1–3.

M. J. P. Wolf, “Genre and the video game,” Mediu. video game, hal.

–134, 2001.

W. Y. K. Chiang, D. Zhang, dan L. Zhou, “Predicting and

explaining patronage behavior toward web and traditional stores

using neural networks: A comparative analysis with logistic

regression,” Decis. Support Syst., vol. 41, no. 2, hal. 514–531, 2006.

R. J. Thieme, M. Song, dan R. J. Calantone, “Artificial neural

network decision support systems for new product development

project selection,” J. Mark. Res., vol. 37, no. 4, hal. 499–507, 2000.

A. Dey, “Machine Learning Algorithms: A Review,” Int. J. Comput.

Sci. Inf. Technol., vol. 7, no. 3, hal. 1174–1179, 2016.

L. K. P. Suryapranata, G. P. Kusuma, Y. Heryadi, B. S. Abbas,

Lukas, dan A. S. Ahmad, “Personality trait prediction based on

game character design using machine learning approach,” in 2017

International Conference on Innovative and Creative Information

Technology (ICITech), 2017, hal. 1–5.

G. Park et al., “Automatic personality assessment through social

media language,” J. Pers. Soc. Psychol., vol. 108, no. 6, hal. 934–

, 2015.

A. Basu, A. Dasgupta, A. Thyagharajan, A. Routray, R. Guha, dan

P. Mitra, “A Portable Personality Recognizer Based on Affective

State Classification Using Spectral Fusion of Features,” IEEE

Trans. Affect. Comput., vol. 9, no. 3, hal. 330–342, Jul 2018.

M. M. Tadesse, H. Lin, B. Xu, dan L. Yang, “Personality

Predictions Based on User Behavior on the Facebook Social Media

Platform,” IEEE Access, vol. 6, hal. 61959–61969, 2018.

Y. Zheng, “Predicting Personality Traits by Student Learning

Behaviors on Blackboard Systems,” SHS Web Conf., vol. 77, hal.

, 2020.

T. Ding, C. Zhang, dan M. Bos, “Causal feature selection for

individual characteristics prediction,” Proc. - Int. Conf. Tools with Artif. Intell. ICTAI, vol. 2018-Novem, hal. 540–547, 2018.

G. Stoet, “PsyToolkit: A Novel Web-Based Method for Running

Online Questionnaires and Reaction-Time Experiments,” Teach.

Psychol., vol. 44, no. 1, hal. 24–31, 2017.

G. Stoet, “PsyToolkit: A software package for programming

psychological experiments using Linux,” Behav. Res. Methods, vol.

, no. 4, hal. 1096–1104, 2010.

F. R. Lang, D. John, O. Lüdtke, J. Schupp, dan G. G. Wagner,

“Short assessment of the Big Five: Robust across survey methods

except telephone interviewing,” Behav. Res. Methods, vol. 43, no. 2,

hal. 548–567, 2011.




DOI: https://doi.org/10.17509/jatikom.v4i2.41500

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jurnal Aplikasi dan Teori Ilmu Komputer



JATIKOM is published by Universitas Pendidikan Indonesia
Jl. Dr. Setiabudhi 229 Bandung 40154, West Java, Indonesia
Website: http://www.upi.edu