Distortions in sound: Bridging acoustics and psychoacoustics in auditory perception
Abstract
The field of acoustics encompasses the examination of sound, encompassing both its physical characteristics and the way in which humans perceive auditory input. Acoustics is the study of how sound waves are created and spread physically, while psychoacoustics connects these physical characteristics to our auditory perceptions. Comprehending these two features is essential for progress in audio technology and understanding auditory perception aberrations such as paracusia and diplacusis. This research consolidates information from multiple investigations to examine the interaction between acoustics and psychoacoustics. The technique entails examining the current body of literature on the fundamental principles governing sound waves, their interaction with various materials, and their movement across space. The examination of psychoacoustic elements involved the conversion of sound waves into brain impulses. The study also examines certain psychoacoustic phenomena, such as the sense of pitch and auditory distortions. By combining acoustic and psychoacoustic concepts, we can gain a thorough comprehension of how we perceive sound. Sound waves, generated by mechanical vibrations, pass through substances such as air, causing compression and rarefaction cycles that move at a speed of about 344 m/s at a temperature of 20°C. Psychoacoustics studies the perception of sound waves, specifically how they are processed by the ear and converted into neural signals that the brain can understand. The key findings reveal the subjective nature of pitch perception, where alterations in intensity or length impact the perceived frequency and the precise sensitivity of pitch discrimination. Furthermore, abnormalities such as paracusia and diplacusis emphasize the intricacies of auditory perception. The study highlights the significance of psychoacoustics in audio technology, where principles are utilized in audio compression and noise reduction to improve sound quality and clarity. The comprehensive comprehension of acoustics and psychoacoustics lays the groundwork for advancements in audio technology and the creation of auditory experiences.
Keywords
Full Text:
PDFReferences
Albers, G. D., & Wilson, W. H. (1968). Diplacusis: I. Historical Review. Archives of Otolaryngology, 87(6), 601-603.
Altmann, J. (2001). Acoustic weapons‐a prospective assessment. Science & Global Security, 9(3), 165-234.
Agnew, J. (1998). The causes and effects of distortion and internal noise in hearing aids. Trends in amplification, 3(3), 82-118.
Anderson, S., White-Schwoch, T., Parbery-Clark, A., & Kraus, N. (2013). A dynamic auditory-cognitive system supports speech-in-noise perception in older adults. Hearing research, 300, 18-32.
Arkin, W. M. (1997). Acoustic anti‐personnel weapons: An inhumane future?. Medicine, Conflict and Survival, 13(4), 314-326.
Asutay, E., Västfjäll, D., Tajadura-Jimenez, A., Genell, A., Bergman, P., & Kleiner, M. (2012). Emoacoustics: A study of the psychoacoustical and psychological dimensions of emotional sound design. Journal of the Audio Engineering Society, 60(1/2), 21-28.
Avan, P., Büki, B., & Petit, C. (2013). Auditory distortions: origins and functions. Physiological Reviews, 93(4), 1563-1619.
Bandara, W., Furtmueller, E., Gorbacheva, E., Miskon, S., & Beekhuyzen, J. (2015). Achieving rigor in literature reviews: Insights from qualitative data analysis and tool-support. Communications of the Association for Information systems, 37(1), 8.
Bartel, L., & Mosabbir, A. (2021, May). Possible mechanisms for the effects of sound vibration on human health. In Healthcare (Vol. 9, No. 5, p. 597). MDPI.
Bayón, A. R., de Sagrario, M. T., & Sampedro, F. G. (2017). Auditory hallucinations in cognitive neurology. Neurología (English Edition), 32(6), 345-354.
Blauert, J. (2012). A perceptionist's view on psychoacoustics. Archives of Acoustics, 37(3), 365-371.
Brysbaert, M., Buchmeier, M., Conrad, M., Jacobs, A. M., Bölte, J., & Böhl, A. (2011). The word frequency effect. Experimental psychology.
Casali, J. G. (2021). Sound and noise: Measurement and design guidance. Handbook of Human Factors and Ergonomics, 457-493.
Conway, C. M., Pisoni, D. B., & Kronenberger, W. G. (2009). The importance of sound for cognitive sequencing abilities: The auditory scaffolding hypothesis. Current directions in psychological science, 18(5), 275-279.
Cox, R. M., & Alexander, G. C. (1995). The abbreviated profile of hearing aid benefit. Ear and hearing, 16(2), 176-186.
Cox, R. M., Alexander, G. C., Taylor, I. M., & Gray, G. A. (1997). The contour test of loudness perception. Ear and hearing, 18(5), 388-400.
Crandall, I. B. (1925). The sounds of speech. The bell system technical journal, 4(4), 586-639.
Cummer, S. A., Christensen, J., & Alù, A. (2016). Controlling sound with acoustic metamaterials. Nature Reviews Materials, 1(3), 1-13.
Davis, M. F. (2007). Audio and electroacoustics. Springer handbook of acoustics, 779-817.
Dzulkifli, N., Santosa, D., & Kusmiati, M. (2021). Scoping Review: Pengaruh Mendengarkan Musik Klasik terhadap Kemampuan Konsentrasi Mahasiswa. Prosiding Pendidikan Dokter, 7(1), 50-53.
Durant, A. (1990). A new day for music? Digital technology in contemporary music-making.
Ellermeier, W., & Zimmer, K. (2014). The psychoacoustics of the irrelevant sound effect. Acoustical Science and Technology, 35(1), 10-16.
Fay, R. R. (1988). Comparative psychoacoustics. Hearing research, 34(3), 295-305.
Fossey, E., Harvey, C., McDermott, F., & Davidson, L. (2002). Understanding and evaluating qualitative research. Australian & New Zealand journal of psychiatry, 36(6), 717-732.
Fusaro, G., Kang, J., Asdrubali, F., & Chang, W. S. (2022). Assessment of acoustic metawindow unit through psychoacoustic analysis and human perception. Applied Acoustics, 196, 108885.
Gabrielsson, A., & Lindström, B. (1985). Perceived sound quality of high-fidelity loudspeakers. Journal of the Audio Engineering Society, 33(1/2), 33-53.
Goldstein, J. L. (1967). Auditory nonlinearity. The Journal of the Acoustical Society of America, 41(3), 676-699.
Heller, E. J. (2013). Why you hear what you hear: an experiential approach to sound, music, and psychoacoustics. Princeton University Press.
Herre, J., & Dick, S. (2019). Psychoacoustic models for perceptual audio coding—A tutorial review. Applied Sciences, 9(14), 2854.
Le, T. N., Straatman, L. V., Lea, J., & Westerberg, B. (2017). Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. Journal of Otolaryngology-Head & Neck Surgery, 46(1), 41.
Leventhall, G. (2007). What is infrasound?. Progress in Biophysics and Molecular Biology, 93(1-3), 130-137.
Li, Z. N., Drew, M. S., Liu, J., Li, Z. N., Drew, M. S., & Liu, J. (2021). MPEG Audio Compression. Fundamentals of Multimedia, 505-531.
Licklider, J. C. R. (1951). A duplex theory of pitch perception. The Journal of the Acoustical Society of America, 23(1_Supplement), 147-147.
Melchior, V. R. (2019). High-resolution audio: a history and perspective. Journal of the Audio Engineering Society, 67(5), 246-257.
Metzner, S., Verhey, J., Braak, P., & Hots, J. (2018). Auditory sensitivity in survivors of torture, political violence and flight—An exploratory study on risks and opportunities of music therapy. The Arts in Psychotherapy, 58, 33-41.
Meyers, K., Kapadia, N., & Sengupta, M. (2021). A preliminary study connecting covid-19 and the influence of psychoacoustic therapies. Xplore Xavier's Res J, 12(2), 1-13.
Micheyl, C., & Oxenham, A. J. (2010). Pitch, harmonicity and concurrent sound segregation: Psychoacoustical and neurophysiological findings. Hearing research, 266(1-2), 36-51.
Miller, E. E., Grosberg, B. M., Crystal, S. C., & Robbins, M. S. (2015). Auditory hallucinations associated with migraine: Case series and literature review. Cephalalgia, 35(10), 923-930.
Minton, J. P. (1946). Diplacusis and acuity of hearing. Archives of Otolaryngology, 44(2), 184-190.
Mohajan, H. K. (2018). Qualitative research methodology in social sciences and related subjects. Journal of economic development, environment and people, 7(1), 23-48.
Moore, B. C. (2014). Psychoacoustics. Springer handbook of acoustics, 475-517.
Nagata, S., Furihata, K., Wada, T., Asano, D. K., & Yanagisawa, T. (2005). A three-dimensional sound intensity measurement system for sound source identification and sound power determination by ln models. The Journal of the Acoustical Society of America, 118(6), 3691-3705.
Nuckolls, J. B. (1999). The case for sound symbolism. Annual review of anthropology, 28(1), 225-252.
Pascal, J., Bourgeade, A., Lagier, M., & Legros, C. (1998). Linear and nonlinear model of the human middle ear. The Journal of the Acoustical Society of America, 104(3), 1509-1516.
Pew, R. W. (2002). Introduction. Evolution of Human–Computer Interaction: From Memex to Bluetooth and Beyond. In The human-computer interaction handbook (pp. 33-50). CRC Press.
Regehr, G., & Norman, G. R. (1996). Issues in cognitive psychology: implications for professional education. Academic Medicine, 71(9), 988-1001.
Rentfrow, P. J. (2012). The role of music in everyday life: Current directions in the social psychology of music. Social and personality psychology compass, 6(5), 402-416.
Rodin, J., & Salovey, P. (1989). Health psychology. Annual review of psychology, 40(1), 533-579.
Russell, J. A., & Ward, L. M. (1982). Environmental psychology. Annual review of psychology, 33(1), 651-689.
Safarati, N. (2023). Literature Review: Konsep Bunyi Pada Alat Musik Gitar. JEMAS: Jurnal Edukasi Matematika dan Sains, 4(2), 94-97.
Salt, A. N., & Hullar, T. E. (2010). Responses of the ear to low frequency sounds, infrasound and wind turbines. Hearing research, 268(1-2), 12-21.
Schust, M. (2004). Effects of low frequency noise up to 100 Hz. Noise and Health, 6(23), 73-85.
Setyawan, D., Susilaningsih, F. S., & Emaliyawati, E. (2013). Intervensi Terapi Musik Relaksasi Dan Suara Alam (Nature Sound) Terhadap Tingkat Nyeri Dan Kecemasan Pasien (Literature Review). Jurnal Ilmu Keperawatan dan Kebidanan, 1(8).
Schutt, R. K. (2019). Quantitative methods. The Wiley Blackwell Companion to Sociology, 39-56.
Slaney, M., & Lyon, R. F. (1990, April). A perceptual pitch detector. In International conference on acoustics, speech, and signal processing (pp. 357-360). IEEE.
Soize, C. (1993). A model and numerical method in the medium frequency range for vibroacoustic predictions using the theory of structural fuzzy. The Journal of the Acoustical Society of America, 94(2), 849-865.
Susini, P., Houix, O., & Misdariis, N. (2014). Sound design: an applied, experimental framework to study the perception of everyday sounds. The New Soundtrack, 4(2), 103-121.
Swets, J. A. (2005). The ABC's of BBN: From acoustics to behavioral sciences to computers. IEEE Annals of the History of Computing, 27(2), 15-29.
Thomas, R. (1952). The mechanism of the cochlea. The Journal of Laryngology & Otology, 66(11), 543-551.
Toh, W. L., Moseley, P., & Fernyhough, C. (2022). Hearing voices as a feature of typical and psychopathological experience. Nature Reviews Psychology, 1(2), 72-86.
Uppenkamp, S., & Röhl, M. (2014). Human auditory neuroimaging of intensity and loudness. Hearing Research, 307, 65-73.
Viemeister, N. F. (1990, May). An overview of psychoacoustics and auditory perception. In Audio Engineering Society Conference: 8th International Conference: The Sound of Audio. Audio Engineering Society.
Werner, L. A., & VandenBos, G. R. (1993). Developmental psychoacoustics: What infants and children hear. Psychiatric Services, 44(7), 624-626.
Yost, W. A. (2014). Psychoacoustics and auditory perception. In Perspectives on Auditory Research (pp. 611-631). New York, NY: Springer New York.
Yost, W. A. (2015). Psychoacoustics: A brief historical overview. Acoustics Today, 11(3), 46-53.
Ziemer, T., & Schultheis, H. (2019, June). Psychoacoustical signal processing for three-dimensional sonification. In 25th international conference on auditory displays (ICAD2019), Newcastle (pp. 277-284).
Ziemer, T., Nuchprayoon, N., & Schultheis, H. (2019). Psychoacoustic sonification as user interface for human-machine interaction. arXiv preprint arXiv:1912.08609.
DOI: https://doi.org/10.17509/interlude.v3i2.71595
Copyright (c) 2024 Universitas Pendidikan Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.