Research Developments Analysis on Gold Nanoparticles (AuNPS) as Antimicrobial Agents through Bibliometric Computational Mapping using VOSviewer

Thyta Medina Salsabila Erlangga, Asep Bayu Dani Nandiyanto

Sari


The many uses of gold nanoparticles in the biomedical field, including as an antimicrobial agent, prompted us to analyze the development of gold nanoparticles as antimicrobial agents research through a bibliometric approach with computational mapping analysis. The publication data used are publications from the Google Scholar database using the Publish or Perish Reference Manager software. The article's title, abstract, and publication year are used as a reference in processing publication data to make it more relevant and specific to the related topic, and the data is visualized by VOSviewer software. Found 257 highly relevant publication articles on related issues indexed by Google Scholar during the last ten years (2013 to 2022). The results show that research on associated topics has developed well because the number of publications has not decreased from 2013-2021, and until August 2022, the number of publications reached an amount equivalent to the number of publications in 2015-2017. The bibliometric results show that the publication trend of gold nanoparticles as antimicrobial agents is directed at studies on antimicrobial effect, antimicrobial property, and antiviral activity. The results of this study are expected to be used as a first step for further research on related topics.


Kata Kunci


Bibliometric; Computational: Gold nanoparticles; Antimicrobial; and Vosviewer.

Teks Lengkap:

PDF (English)

Referensi


I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., vol. 12, no. 7, pp. 908–931, 2019, doi: 10.1016/j.arabjc.2017.05.011.

E. Sánchez-López et al., “Metal-based nanoparticles as antimicrobial agents: An overview,” Nanomaterials, vol. 10, no. 2, pp. 1–39, 2020, doi: 10.3390/nano10020292.

A. Sumaira et al., “Gold-Based Nanomaterials for Applications in Nanomedicine,” Top Curr Chem, vol. 370, pp. 169–202, 2016, doi: 10.1007/978-3-319-22942-3.

N. Khlebtsov and L. Dykmana, “Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies,” Chem. Soc. Rev., vol. 40, no. 3, pp. 1647–1671, 2011, doi: 10.1039/c0cs00018c.

X. Li et al., “Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria,” ACS Nano, vol. 8, no. 10, pp. 10682–10686, 2014, doi: 10.1021/nn5042625.

T. Ahmad et al., “Antifungal activity of gold nanoparticles prepared by solvothermal method,” Mater. Res. Bull., vol. 48, no. 1, pp. 12–20, 2013, doi: 10.1016/j.materresbull.2012.09.069.

M. M. Mohamed, S. A. Fouad, H. A. Elshoky, G. M. Mohammed, and T. A. Salaheldin, “Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis,” Int. J. Vet. Sci. Med., vol. 5, no. 1, pp. 23–29, 2017, doi: 10.1016/j.ijvsm.2017.02.003.

A. Babaei, S. M. Mousavi, M. Ghasemi, N. Pirbonyeh, M. Soleimani, and A. Moattari, “Gold nanoparticles show potential in vitro antiviral and anticancer activity,” Life Sci., vol. 284, p. 119652, 2021, doi: 10.1016/j.lfs.2021.119652.

M. . Zawrah and S. I. A. El-Moez, “Antimicrobial Activities of Gold Nanoparticles against Major Foodborne Pathogens,” vol. 8, no. 4, pp. 1–7, 2011.

N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, and W. M. Lim, “How to conduct a bibliometric analysis: An overview and guidelines,” J. Bus. Res., vol. 133, no. May, pp. 285–296, 2021, doi: 10.1016/j.jbusres.2021.04.070.

D. F. Al Husaeni and A. B. D. Nandiyanto, “Bibliometric Computational Mapping Analysis of Publications on Mechanical Engineering Education Using Vosviewer,” J. Eng. Sci. Technol., vol. 17, no. 2, pp. 1135–1149, 2022.

C. L. Fleming, M. Golzan, C. Gunawan, and K. C. McGrath, “Systematic and Bibliometric Analysis of Magnetite Nanoparticles and Their Applications in (Biomedical) Research,” Glob. Challenges, vol. 2200009, 2022, doi: 10.1002/gch2.202200009.

A. S. Nugraha, “Bibliometric Analysis of Magnetite Nanoparticle Production Research During 2017-2021 Using Vosviewer,” Indones. J. Multidiciplinary Res., vol. 2, no. 2, pp. 327–332, 2022, [Online]. Available: https://ejournal.upi.edu/index.php/IJOMR/article/view/43331

Y. Tang, H. Xin, F. Yang, and X. Long, “A historical review and bibliometric analysis of nanoparticles toxicity on algae,” J. Nanoparticle Res., vol. 20, no. 4, 2018, doi: 10.1007/s11051-018-4196-4.

Z. Wang, T. Zhang, F. Huang, and Z. Wang, “The reproductive and developmental toxicity of nanoparticles: A bibliometric analysis,” Toxicol. Ind. Health, vol. 34, no. 3, pp. 169–177, 2018, doi: 10.1177/0748233717744430.

B. Su, Q. Guan, and S. Yu, “The neurotoxicity of nanoparticles: A bibliometric analysis,” Toxicol. Ind. Health, vol. 34, no. 12, pp. 922–929, 2018, doi: 10.1177/0748233718804973.

S. León-Silva, F. Fernández-Luqueño, E. Záyago-Lau, and F. López-Valdez, “Silver nanoparticles, research and development in Mexico: a bibliometric analysis,” Scientometrics, vol. 123, no. 1, pp. 31–49, 2020, doi: 10.1007/s11192-020-03367-y.

N. Vosoughian, A. Mohammadi, and H. Hamayeli, “Bacteria as an Efficient Bacteriosystem for the Synthesis of Nanoparticles: A Bibliometric Analysis,” Nano, vol. 16, no. 14, 2021, doi: 10.1142/S1793292021300140.

W. Su, H. Zhang, Y. Xing, X. Li, J. Wang, and C. Cai, “A bibliometric analysis and review of supercritical fluids for the synthesis of nanomaterials,” Nanomaterials, vol. 11, no. 2, pp. 1–14, 2021, doi: 10.3390/nano11020336.

S. Ale Ebrahim, A. Ashtari, M. Zamani Pedram, and N. Ale Ebrahim, “Publication Trends in Drug Delivery and Magnetic Nanoparticles,” Nanoscale Res. Lett., vol. 14, 2019, doi: 10.1186/s11671-019-2994-y.

M. Darroudi, M. Gholami, M. Rezayi, and M. Khazaei, “An overview and bibliometric analysis on the colorectal cancer therapy by magnetic functionalized nanoparticles for the responsive and targeted drug delivery,” J. Nanobiotechnology, vol. 19, no. 1, pp. 1–20, 2021, doi: 10.1186/s12951-021-01150-6.

P. Panes, M. A. Macariola, C. Niervo, A. G. Maghanoy, K. P. Garcia, and J. J. Ignacio, “A bibliometric approach for analyzing the potential role of waste-derived nanoparticles in the upstream oil and gas industry,” Clean. Eng. Technol., vol. 8, no. March, p. 100468, 2022, doi: 10.1016/j.clet.2022.100468.

G. Rogers, M. Szomszor, and J. Adams, “Sample size in bibliometric analysis,” Scientometrics, vol. 125, no. 1, pp. 777–794, 2020, doi: 10.1007/s11192-020-03647-7.

S. Shamaila, N. Zafar, S. Riaz, R. Sharif, J. Nazir, and S. Naseem, “Gold nanoparticles: An efficient antimicrobial agent against enteric bacterial human pathogen,” Nanomaterials, vol. 6, no. 4, pp. 1–10, 2016, doi: 10.3390/nano6040071.

Y. Zhao, Z. Chen, Y. Chen, J. Xu, J. Li, and X. Jiang, “Synergy of non-antibiotic drugs and pyrimidinethiol on gold nanoparticles against superbugs,” J. Am. Chem. Soc., vol. 135, no. 35, pp. 12940–12943, 2013, doi: 10.1021/ja4058635.

C. Malarkodi, S. Rajeshkumar, M. Vanaja, K. Paulkumar, G. Gnanajobitha, and G. Annadurai, “Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae,” J. Nanostructure Chem., vol. 3, no. 1, pp. 1–7, 2013, doi: 10.1186/2193-8865-3-30.

M. Składanowski, M. Wypij, D. Laskowski, P. Golińska, H. Dahm, and M. Rai, “Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens,” J. Clust. Sci., vol. 28, no. 1, pp. 59–79, 2017, doi: 10.1007/s10876-016-1043-6.

N. J. Millenbaugh, J. B. Baskin, M. N. DeSilva, W. R. Elliott, and R. D. Glickman, “Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles,” Int. J. Nanomedicine, vol. 10, pp. 1953–1960, 2015, doi: 10.2147/IJN.S76150.

E. Panzarini, S. Mariano, E. Carata, F. Mura, M. Rossi, and L. Dini, “Intracellular transport of silver and gold nanoparticles and biological responses: An update,” Int. J. Mol. Sci., vol. 19, no. 5, 2018, doi: 10.3390/ijms19051305.

J. Kim et al., “Porous gold nanoparticles for attenuating infectivity of influenza A virus,” J. Nanobiotechnology, vol. 18, no. 1, pp. 1–11, 2020, doi: 10.1186/s12951-020-00611-8.

A. M. Paul et al., “Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro,” J. Gen. Virol., vol. 95, no. PART 8, pp. 1712–1722, 2014, doi: 10.1099/vir.0.066084-0.

A. Lateef, S. A. Ojo, B. I. Folarin, E. B. Gueguim-Kana, and L. S. Beukes, “Kolanut (Cola nitida) Mediated Synthesis of Silver–Gold Alloy Nanoparticles: Antifungal, Catalytic, Larvicidal and Thrombolytic Applications,” J. Clust. Sci., vol. 27, no. 5, pp. 1561–1577, 2016, doi: 10.1007/s10876-016-1019-6.

A. S. Joshi, P. Singh, and I. Mijakovic, “Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance,” Int. J. Mol. Sci., vol. 21, no. 20, pp. 1–24, 2020, doi: 10.3390/ijms21207658.

C. Vijilvani et al., “Antimicrobial and catalytic activities of biosynthesized gold, silver and palladium nanoparticles from Solanum nigurum leaves,” J. Photochem. Photobiol. B Biol., vol. 202, p. 111713, 2020, doi: 10.1016/j.jphotobiol.2019.111713.

A. Khatua et al., “Phytosynthesis, Characterization and Fungicidal Potential of Emerging Gold Nanoparticles Using Pongamia pinnata Leave Extract: A Novel Approach in Nanoparticle Synthesis,” J. Clust. Sci., vol. 31, no. 1, pp. 125–131, 2020, doi: 10.1007/s10876-019-01624-6.

M. A. Shaker and M. I. Shaaban, “Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: In vitro antibacterial study,” Int. J. Pharm., vol. 525, no. 1, pp. 71–84, 2017, doi: 10.1016/j.ijpharm.2017.04.019.

M. R. Shah et al., “Morphological analysis of the antimicrobial action of silver and gold nanoparticles stabilized with ceftriaxone on Escherichia coli using atomic force microscopy Muhammad,” New J. Chem., vol. 38, no. 11, pp. 5633–5640, 2014.

E. Priyadarshini, N. Pradhan, L. B. Sukla, and P. K. Panda, “Controlled synthesis of gold nanoparticles using Aspergillus terreus if0 and its antibacterial potential against gram negative pathogenic bacteria,” J. Nanotechnol., vol. 2014, 2014, doi: 10.1155/2014/653198.

P. Velmurugan et al., “Synthesis of Silver and Gold Nanoparticles Using Cashew Nut Shell Liquid and Its Antibacterial Activity Against Fish Pathogens,” Indian J. Microbiol., vol. 54, no. 2, pp. 196–202, 2014, doi: 10.1007/s12088-013-0437-5.

B. Syed, N. N. Prasad, and S. Satisha, “Endogenic mediated synthesis of gold nanoparticles bearing bactericidal activity,” J. Microsc. Ultrastruct., vol. 4, no. 3, p. 162, 2016, doi: 10.1016/j.jmau.2016.01.004.

M. M. El-Sheekh, M. T. Shabaan, L. Hassan, and H. H. Morsi, “Antiviral activity of algae biosynthesized silver and gold nanoparticles against Herps Simplex (HSV-1) virus in vitro using cell-line culture technique,” Int. J. Environ. Health Res., vol. 00, no. 00, pp. 1–12, 2020, doi: 10.1080/09603123.2020.1789946.

E. Morales-Avila et al., “Antibacterial Efficacy of Gold and Silver Nanoparticles Functionalized with the Ubiquicidin (29-41) Antimicrobial Peptide,” J. Nanomater., vol. 2017, 2017, doi: 10.1155/2017/5831959.




DOI: https://doi.org/10.17509/ci.v3i1.54463

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##